Home
Class 11
MATHS
Three forces bar(F(1))=(3hat i+2hat j-ha...

Three forces `bar(F_(1))=(3hat i+2hat j-hat k)N`,`bar(F_(2))=(3hat i+4hat j-5hat k)N` and `bar(F_(3))=A(hat i+hat j-hat k)N` act simultaneously on a particle. In order that the particle remains in equilibrium, the value of A should be

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a)=3hat i-3hat j-4hat k, bar(b)=hat i+2hat j+hat k and bar(c)=3hat i-hat j-2hat k , then [bar(a) bar(b) bar(c)] =

Three forces vec(F_(1))=23hat(j)+3hat(j)-hat(k), vec(F_(2))=4hat(i)-hat(j)-2hat(k) and vec(F_(3))=23hat(j)+3hat(k)N act on a block of mass 5kg . Calculate the acceleration of the particle.

If bar(P)=hat i+hat j+hat k,bar(Q)=2hat i-hat j-hat k , then bar(P)-bar(Q) is

Prove that point hat i+2hat j-3hat k,2hat i-hat j+hat k and 2hat i+5hat j-hat k from a triangle in space.

vec a=3hat i-hat j-4hat k,vec b=-2hat i+4hat j-3hat k and vec c=hat i+2hat j-hat k,f in d|3vec a-2vec b+4vec c|

vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+mu(2hat i+4hat j-5hat k)

If vec r=(hat i+2hat j+3hat k)+lambda(hat i-hat j+hat k) and vec r=(hat i+2hat j+3hat k)+mu(hat i+hat j-hat k) are bisector of two lines is

If bar(a)=hat i+2hat j-hat k and bar(b)=3hat i+hat j-5hat k find a unit vector in a direction parallel to vector (bar(a)-bar(b))

The following forces are acting on a particle located at (2,3,1) , bar(F)_(1)=2hat i+3hat j-2hat k,bar(F)_(2)=3hat i+hat j+3hat k,bar(F)_(3)=-5hat i-2hat j+hatk . Find the torque acting on the particle w.r.t. origin.

Two vector forces (2hat i+hat j+3hat k) and (3hat i+hat j-hat k) are acted on a particle.Find the angle between the resultant force to the XY- plane.