Home
Class 12
MATHS
Let A=[[4, a ],[-1,b]] and B=[[1,-2],[1,...

Let `A=[[4, a ],[-1,b]]` and `B=[[1,-2],[1,4]]` are two matrices satisfying the relation `A^(3)+3A^(2)B+3AB^(2)+B^(3)=(A+B)^(3)` .If `(A+B)= lambda(A^(-1)+B^(-1))` ,then find the value of `lambda`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A =[ 1 2 3 4 ] and B=[[1],[2],[3],[4]] then AB=

Let the matrix A=[(1,1),(2,2)] and B=A+A^(2)+A^(3)+A^(4) . If B=lambdaA, AA lambda in R , then the vlaue of lambda is equal to

Let A=[(1, 1),(3,3)] and B=A+A^(2)+A^(3)+A^(4) . If B=lambdaA, AA lambda in R , then the value of lambda is equal to

A=[[1,1],[0,1]] and B=[[b_(1),b_(2)],[b_(3),b_(4)]] are two matrices such that , 10(A^(10))+adj(A^(10))=B .What is the value of sum_(k=1)^(4)b_(k) ?

If a, b are two real number satisfying the relation 2a^(2) - 3a - 1 = 0 and b^(2) + 3b - 2 = 0 and ab ne 1 , then value of (ab + a+ 1)/(b) is

If A=[[1,-2,3],[-4,2,5]] & B=[[1,3],[-1,0],[2,4]] then verify that (AB)'=B'A'

If A=[[1,-2,3],[-4,2,5]] , B=[[1,3],[-1,0],[2,4]] then verify that (AB)'=B'A'

If the points A(2,3,-4), B(1,-2,3) and C (3,lambda,-1) are colliner, then value of lambda is

If A= [[3,4],[-4,3]] and B= [[2,1],[-1,2]] ,show that (A+B)(A-B)=A^2-B^2

If A={1,2,3,4,5} and B={1,3,5,7,9} then find the value of (A-B)uu(B-A)