Home
Class 11
MATHS
The function f(x)=x^(2)e^(-2x),x>0 .If l...

The function `f(x)=x^(2)e^(-2x),x>0` .If l is maximum value of f(x) ,then find `[l^(-1)]` . (Where [.] represents greater integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=x^2e^(-2x),x > 0. If l is maximum value of f(x) find [l^(-1)] (where [ ] denotes G.I.F.).

The function f(x)=x^(2)e^(x) has maximum value

Find the domain and range of f(x)="sin"^(-1)(x-[x]), where [.] represents the greatest integer function.

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)

f:(2,3)rarr(0,1) defined by f(x)=x-[x], where [.] represents the greatest integer function.

Find the range of f(x)=(x-[x])/(1-[x]+x'), where [] represents the greatest integer function.

" The range of the function "f(x)=sin(sin^(-1)[x^(2)-1])" is (where "[" .] represents greatest integer function) "

The range of the function f(x)=sin(sin^(-1)[x^(2)-1]) is (where[*] represents greatest integer function)

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)