Home
Class 12
MATHS
Lt(n rarr oo)((1^(2)+1)/(n^(3))+(2^(2)+2...

`Lt_(n rarr oo)((1^(2)+1)/(n^(3))+(2^(2)+2)/(n^(3))+(3^(2)+3)/(n^(3))+...+(n^(2)+n)/(n^(3)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)[(1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(3))+...+(n^(2))/(n^(3))]=?

Evaluate: lim_(n rarr oo)((1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(4))+...+(1)/(n))

Prove that lim_ (n rarr oo) ((1 ^ (2)) / (n ^ (3)) + (2 ^ (2)) / (n ^ (3)) + (3 ^ (2)) / ( n ^ (3)) + .... + (n ^ (2)) / (n ^ (3))) = (1) / (3)

lim_(n rarr oo)(2^(3n))/(3^(2n))=

lim_ (n rarr oo) ((1) / (n ^ (2)) + (2) / (n ^ (2)) + (3) / (n ^ (2)) ++ (n-1) / (n ^ (2)))

lim_(n rarr oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))+...+(n)/(n^(2)))

lim_(n rarr oo)(((n+1)^(1/3))/(n^(4/3))+((n+2)^(1/3))/(n^(4/3))+.....+((2n)^(1/3))/(n^(4/3))) is equal to

A) |lim_(n rarr oo)((n^((1)/(2)))/(n^((3)/(2)))+(n^((1)/(2)))/((n+3)^((3)/(2)))+....+(n^((1)/(2)))/( n+3(n-1) ^((3)/(2))))=

Evaluate: lim_(n rarr oo)((1)/(n^(2)+1)+(2)/(n^(2)+2)+(3)/(n^(2)+3)+...+(n)/(n^(2)+n))