Home
Class 12
MATHS
Let f(x) be a differentiable function su...

Let `f(x)` be a differentiable function such that `f(0) = 1`, `f (1)= 2`, `f(2)=1` and `f(4)=4`. The graph of `y=f(x)` is given below fun If x € (0,5), then find the total number local maximum points and local minimum points.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a differentiable function such that f(0)=1,f(1)=2,f(2)=1 and f(4)=4 .The graph of y=f'(x) is given below If x in (0,5) ,then find the total number local maximum points and local minimum points.

If f(x) be a differentiable function,such that f(x)f(y)+2=f(x)+f(y)+f(xy);f'(0)=0,f'(1)=2 then find f(x)

Let f(x)=sinx-x" on"[0,pi//2] find local maximum and local minimum.

Let f(x)=x^(3)-3x^(2)+6 find the point at which f(x) assumes local maximum and local minimum.

Let f(x) be a function such that f(x)*f(y)=f(x+y),f(0)=1,f(1)=4. If 2g(x)=f(x)*(1-g(x))

Write True/False: If f'( c )=0 then f(x) has a local maximum or a local minimum at x=c

Let f : (-5,5)rarrR be a differentiable function of with f(4) = 1, f'(4)=1, f(0) = -1 and f'(0) = If g(x)=(f(2f^(2)(x)+2))^(2), then g'(0) equals

Let f : (-5,5)rarrR be a differentiable function of with f(4) = 1, f'(4)=1, f(0) = -1 and f'(0) = If g(x)=(f(2f^(2)(x)+2))^(2), then g'(0) equals