Home
Class 11
MATHS
The function f(x)=sin^(4)x+cos^(4)x incr...

The function `f(x)=sin^(4)x+cos^(4)x` increasing if

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=sin^4x +cos ^4 x increases if

The function f(x) = sin ^(4)x+ cos ^(4)x increases, if (A) 0 lt x lt (pi)/(8) (B) (pi)/(4) lt x lt (3pi)/(8) (C) ( 3pi)/(8) lt x lt (5pi)/(8) (D) ( 5pi)/(8) lt x lt(3pi)/(4)

If f(x) =sin^(4)x+cos^(4)x increases, if

Show that the function f(x)=sin^(4) x+ cos^(4) x (i) is decreasing in the interval [0,pi/4] . (ii) is increasing in the interval [pi/4,pi/2] .

The difference between the maximum and minimum value of the function f(x)=3sin^(4)x-cos^(6)x is :

Searate the interval into subintervals in which the function f(x)=sin^(4)x+cos^(4)x

The period of the function f(x)=sin^(4)3x+cos^(4)3x , is

Separate the interval [0,(pi)/(2)] into sub intervals in which function f(x)=sin^(4)(x)+cos^(4)(x) is strictly increasing or decreasing.