Home
Class 11
MATHS
Let f(x) be a differentiable function su...

Let f(x) be a differentiable function such that f(0)=1,f(1)=2,f(2)=1 and f(4)=4 .The graph of y=f'(x) is given below If `x in (0,5)`,then find the total number local maximum points and local minimum points.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a differentiable function such that f(0) = 1 , f (1)= 2 , f(2)=1 and f(4)=4 . The graph of y=f(x) is given below fun If x € (0,5), then find the total number local maximum points and local minimum points.

If f(x) be a differentiable function,such that f(x)f(y)+2=f(x)+f(y)+f(xy);f'(0)=0,f'(1)=2 then find f(x)

Let f(x) be a function such that f(x)*f(y)=f(x+y),f(0)=1,f(1)=4. If 2g(x)=f(x)*(1-g(x))

Let f(x)=sinx-x" on"[0,pi//2] find local maximum and local minimum.

Let f(x)=x^(3)-3x^(2)+6 find the point at which f(x) assumes local maximum and local minimum.

Write True/False: If f'( c )=0 then f(x) has a local maximum or a local minimum at x=c

Let f(xy)=f(x)f(y)AA x,y in R and f is differentiable at x=1 such that f'(1)=1 Also,f(1)!=0,f(2)=3. Then find f'(2)