Home
Class 11
MATHS
If theta is an angle given by cos theta...

If `theta` is an angle given by `cos theta=(cos^(2)alpha+cos^(2)beta+cos^(2)gamma)/(sin^(2)alpha+sin^(2)beta+sin^(2)gamma)` where `alpha,beta,gamma` are the angles made by a line with the axes `bar(OX),bar(OY),bar(OZ)` respectively then the value of `theta` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If theta is an angle given by cos theta = (cos ^(2) alpha + cos ^(2) beta + cos ^(2) gamma)/( sin ^(2) alpha + sin ^(2) beta + sin ^(2) gamma) where alpha, beta, gamma are the equal angles made by line with the positive directions of the axes, then the measure of theta is

If cos alpha + cos beta + cos gamma = 3 then sin alpha + sin beta + sin gamma =

If alpha + beta- gamma= pi , prove that sin^(2)alpha + sin^(2)beta - sin^(2)gamma = 2sin alpha sin beta cos gamma .

Given alpha+beta-gamma=pi, prove that sin^(2)alpha+sin^(2)beta-sin^(2)gamma=2sin alpha sin beta cos gamma

Given alpha+beta-gamma=pi, prove that sin^(2)alpha+sin^(2)beta-sin^(2)gamma=2sin alpha sin beta cos gamma

If sin alpha+sin beta+sin gamma=0=cos alpha+cos beta+cos gamma, then the value of sin^(2)alpha+sin^(2)beta+sin^(2)gamma, is

If cos alpha+cos beta+cos gamma=0 and also sin alpha+sin beta+sin gamma=0 then prove that

cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)

If a line in the space makes angle alpha,beta and gamma with the coordinate axes, then cos2alpha+cos2beta+cos2gamma+sin^2alpha+sin^2beta+sin^2gamma equals

If alpha, beta, gamma are direction angles of a line l, then prove that cos^(2)alpha+cos^(2)beta+cos^(2)gamma=1 . Hence, deduce that sin^(2) alpha + sin^(2) beta + sin^(2) gamma = 2 .