Home
Class 11
MATHS
Lim(x->0) (e^(x)-1)/(sqrt(4+x)-2)= (A) ...

` Lim_(x->0) (e^(x)-1)/(sqrt(4+x)-2)=`
(A) 2 (B) 4] (C) -2 (D) `(1)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0) (e^(x)-1)/(sqrt(4+x)-2)=

If f(1)=1 , f'(1)=2 , then find the value of lim_(x rarr1)(sqrt(f(x))-1)/(sqrt(x)-1) (A) 2 (B) 4 (C) 1 (D) (1)/(2)

lim_(x-> -1) (x+1)/(sqrt(x^2 + 3) -2) = (1) -2 (2) 1/2 (3) 2 (4) 0

if f(x)=sqrt(x+2sqrt(2x-4))+sqrt(x-2sqrt(2x-4)) then f'(3)+f'(6)= (A) 0 (B) 1 (C) 2 (D) 1/2

lim_(xrarr0) (ax-(e^(4x)-1))/(ax(e^(4x)-1)) = b .Find a-2b

If x=5+2sqrt(6), then sqrt((x)/(2))-(1)/(sqrt(2x))= (a) 1 (b) 2 (c) 3 (d) 4

lim_(x rarr oo)x(((x)/(x+1))^(x)-(1)/(e)) is equal to (A) (-1)/(2e) (B) (1)/(2e) (C) (1)/(e) (D) oo

Evaluate : lim_( x -> 0 ) (( 1 - sqrt(1 - x^2 ) ))/ x^2 ( a ) 1/2 ( b )   2   ( c )   1   ( d )   -1

Evaluate : lim_( x -> 0 ) (( 1 - sqrt(1 - x^2 ) ))/ x^2 ( a ) 1/2 ( b )   2   ( c )   1   ( d )   -1