Home
Class 12
MATHS
If (x(1),y(1),z(1)),(x(2),y(2),z(2)) and...

If `(x_(1),y_(1),z_(1)),(x_(2),y_(2),z_(2))` and `(x_(3),y_(3),z_(3))` are the vertices of an equilateral triangle such that `(x_(1)-2)^(2)+(y_(1)-3)^(2)+(z_(1)-4)^(2)=(x_(2)-2)^(2)+(y_(2)-3)^(2)+(z_(2)-4)^(2) =(x_(3)-2)^(2)+(y_(3)-3)^(2)+(z_(3)-4)^(2)` then `sum x_(1)+2sum y_(1)+3sum z_(1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

A=[[2,0,00,2,00,0,2]] and B=[[x_(1),y_(1),z_(1)x_(2),y_(2),z_(2)x_(3),y_(3),z_(3)]]

((1)/(2)x^(2)-(1)/(2)y^(2)+(1)/(4)z^(2))-((1)/(3)x^2+(1)/(4)y^(2)+(1)/(2)z^(2))+((1)/(4)x^(2)+(1)/(3)y^(2)+(1)/(3)z^(2))

Prove that x^(3)+y^(3)+z^(3)-3xyz=(1)/(2)(x+y+z)[(x-y)^(2)+(y-z)^(2)+(z-x)^(2)]

Verify that x^(3)+y^(3)+z^(3)-3xyz=(1)/(2)(x+y+z)[(x-y)^(2)+(y-z)^(2)+(z-x)^(2)]

Verify that x^(3)+y^(3)+z^(3)-3xyz=(1)/(2)(x+y+z)[(x-y)^(2)+(y-z)^(2)+(z-x)^(2)]

verify that: x^(3)+y^(3)+z^(3)-3xyz=((1)/(2))(x+y+z)((x-y)^(2)+(y-z)^(2)+(z-x)^(2))

(x+1)/(3)=(y+2)/(1)=(z+1)/(2) and (x-2)/(1)=(y+2)/(2)=(z-3)/(3)

Show that the coordinates off the centroid of the triangle with vertices A(x_(1),y_(1),z_(1)),B(x_(2),y_(2),z_(2)) and (x_(3),y_(3),z_(3)) are ((x_(1)+x_(2)+x_(3))/(3),(y_(1)+y_(2)+y_(3))/(3),(z_(1)+z_(2)+z_(3))/(3))

Show that: ((a^(x+1))/(a^(y+1)))^(x+y)((a^(y+2))/(a^(z+2)))^(y+z)((a^(z+3))/(a^(x+3)))^(z+x)=1