Home
Class 12
MATHS
int(1)^(3)(dx)/(x^(2)+[x]^(2)+1-2x[x])( ...

`int_(1)^(3)(dx)/(x^(2)+[x]^(2)+1-2x[x])`( where `[x]` is the largest integer not exceeding `x`)

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(4)^(10)([x-4]+[10-x])dx= (where [x] is the largest integer not exceeding x)

int_(1)^(2)(x+3)/(x(x+2))dx

int_(1)^(2)(x^(x^(2))+[x^(2)]^(x))dx

int_(0)^(1) (1)/(x^(2) +2x+3)dx

int_(1)^(3)(x-1)(x-2)(x-3)dx=

int_0^102 [Tan^-1 x]dx= (where [x] is the largest integer not exceeding x) (A) 102-tan1 (B) 0 (C) 102 (D) 102-pi/4

int_(-1)^(1)(x^(2)-2x+3)dx

In x epsilon(0,1),f(x)=[3x^(2)+1] , where [x] stands for the greatest integer not exceeding x is: