Home
Class 12
MATHS
lim(x rarr2)[(x-2)/(x^(2)-4)-(1)/(x^(3)-...

`lim_(x rarr2)[(x-2)/(x^(2)-4)-(1)/(x^(3)-3x^(2)+x)]=(1)/(m)` where `l` and `m` are mutually prime then the value of `(l+m)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr1)[(x-1)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+x)]

L_(x rarr1)[(x-1)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+x)]

lim_(x rarr2)[(1)/(x-2)-(2(2x-3))/(x^(3)-3x^(2)+2x)]

lim_(x rarr1)[(x+2)/(x^(2)-5x+4)+(x-4)/(3(x^(2)-3x+2))]

lim_(x rarr2)(x^(3)-3x^(2)+4)/(x^(4)-8x^(2)+16)

Show that lim_(x rarr2)[(1)/(x-2)-(1)/(x^(2)-3x+2)]=

lim_(x rarr1)((x^(4)-3x^(2)+2)/(x^(3)-5x^(2)+3x+1))

lim_(x rarr 1) [(x+2)/(x^2-5x+4)+(x-4)/(3(x^2-3x+2))]

lim_(x rarr1)(x^(4)-3x^(2)+2)/(x^(3)-5x^(2)+3x+1)

lim_(x rarr0)((1+5x^(2))/(1+3x^(2)))^(1/x^(2))=