Home
Class 11
MATHS
prove that sin(pi/4+x)+sin(pi/4-x)=sqrt(...

prove that `sin(pi/4+x)+sin(pi/4-x)=sqrt(2)cosx`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that sin((pi)/(4)+x)+sin((pi)/(4)-x)=sqrt(2)cos x

Using application of trignometric formulas prove that (i)cos(pi/4+x)+cos(pi/4-x)=sqrt2cos x(i1)sin(7pi/12)cos(pi/4)-cos(7pi/12)sin(pi/4)

Prove that cos((pi)/(4)-x)cos((pi)/(4)+x)=(1)/(2)-sin^(2)x

Prove that: cos((3 pi)/(4)+x)-cos((3 pi)/(4)-x)=sqrt(2)sin x

Prove that (i) "cos " ((pi)/(3) +x) =(1)/(2) ( " cos " x - sqrt(3) sin x) (ii) " sin " ((pi)/(4) + x) + " sin " ((pi)/(4)-x) =sqrt(2) " cos " x (iii) (1)/(sqrt(2)) " cos ((pi)/(4) + x) = (1)/(2) " (cos x - sin x) " (iv) " cos x + cos " ((2pi)/(3) +x) + " cos " ((2pi)/(3)-x) =0

Prove that int_(-pi/4)^( pi/4)log(sin x+cos x)backslash dx=-(pi)/(4)backslash log2

Prove that: cos((pi)/(4)-x)cos((pi)/(4)-y)-sin((pi)/(4)-x)sin((pi)/(4)-y)=sin(x+y)

Prove that: cos((3 pi)/(4)+x)-cos((3 pi)/(4)-x)=-sqrt(2)sin x

Prove that: cos((3 pi)/(4)+x)-cos((3 pi)/(4)-x)=-sqrt(2)sin x

Prove that : int_(0)^(pi//2) (sqrt(cos x))/(sqrt(sin x+ sqrt(cos x)))dx=(pi)/(4)