Home
Class 12
MATHS
(dy)/(dx)=log(x+1)...

`(dy)/(dx)=log(x+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

if x^(y)=e^(x-y) then prove that (dy)/(dx)=(log_(e)x)/((1+log_(e)x)^(2))

If x^y = e^(x + y) , show that (dy)/(dx) = (log x - 2)/((1 - log x)^2)

If x^(y) = e^(x - y) prove that (dy)/(dx) = (log_(e)x)/((1 + log_(e)x)^(2)) .

if y=log x^(x) prove that (dy)/(dx)=1+log x

The general solution of x((dy)/(dx))+(log x)y=x^(-(1)/(2)log x) is

Solve (dy)/(dx)=x(2 log x +1), " given that " y =0 " when " x =2.

If y = 2 ^(ax ) and (dy)/(dx) =log 256 at x =1, then a =

solve x((dy)/(dx))=y(log y-log x+1)

The solution of the equation (dy)/(dx)=(x(2log x+1))/(sin y+y cos y) is