Home
Class 14
MATHS
Multiply (1)/(2)a^(2)b-(2)/(3)ab^(2)+b b...

Multiply `(1)/(2)a^(2)b-(2)/(3)ab^(2)+b` by 6abc:

A

`3a^(2)b^(2)c-4a^(2)b^(3)c-30abc`

B

`3a^(3)b^(3)c-4a^(3)b^(2)c+6abc`

C

`6a^(3)b^(3)+18ab^(2)c+30abc`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of multiplying \(\frac{1}{2}a^{2}b - \frac{2}{3}ab^{2} + b\) by \(6abc\), we will follow these steps: ### Step 1: Distribute \(6abc\) to each term in the expression We will multiply each term in the expression \(\frac{1}{2}a^{2}b - \frac{2}{3}ab^{2} + b\) by \(6abc\). \[ 6abc \left(\frac{1}{2}a^{2}b\right) - 6abc \left(\frac{2}{3}ab^{2}\right) + 6abc(b) \] ### Step 2: Calculate each term separately 1. **First term:** \[ 6abc \cdot \frac{1}{2}a^{2}b = \frac{6}{2} \cdot a^{2} \cdot b \cdot abc = 3a^{3}b^{2}c \] 2. **Second term:** \[ 6abc \cdot \left(-\frac{2}{3}ab^{2}\right) = -\frac{6 \cdot 2}{3} \cdot a \cdot b^{2} \cdot abc = -4a^{2}b^{3}c \] 3. **Third term:** \[ 6abc \cdot b = 6 \cdot a \cdot b \cdot b \cdot c = 6ab^{2}c \] ### Step 3: Combine all the terms Now we will combine all the terms we calculated: \[ 3a^{3}b^{2}c - 4a^{2}b^{3}c + 6ab^{2}c \] ### Step 4: Factor out the common term All terms have a common factor of \(c\): \[ c(3a^{3}b^{2} - 4a^{2}b^{3} + 6ab^{2}) \] ### Final Answer The final expression after multiplication and combining like terms is: \[ c(3a^{3}b^{2} - 4a^{2}b^{3} + 6ab^{2}) \]
Promotional Banner

Topper's Solved these Questions

  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 13.2|22 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|47 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos

Similar Questions

Explore conceptually related problems

Multiply -(2)/(3)a^(2)b by (6)/(5)a^(3)b^(2) and verify your result for a = 2 and b = 3

Simplify: -(1)/(2)a^(2)b^(2)c+(1)/(3)ab^(2)c-(1)/(4)abc^(2)-(1)/(5)cb^(2)a^(2)+(1)/(6)cb^(2)a-(1)/(7)c^(2)ab+(1)/(8)ca^(2)b

Multiply: -(3ab^(2))/(5) by ((2a)/(3)-b)

Multiply: -6a^(2)bc,2a^(2)b and -(1)/(4) (ii) (4)/(9)a^(5)b^(2),10a^(3)b and 6

Divide: 6x^(4)yz-3xy^(3)z+8x^(2)yz^(2)yz^(4) by 2xyz(2)/(3)a^(2)b^(2)c^(2)+(4)/(3)ab^(2)c^(3)-(1)/(5)ab^(3)c^(2)by(1)/(2)abc

Multiply the b ^(3), 3b ^(2), 7 ab ^(5)

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If x,y, z are different real umbers and (1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^2+lamda then the value of lamda is

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If x+(1)/(x)=2, thenx^(2)+(1)/(x^(2)) is equal to

ARIHANT SSC-ELEMENTS OF ALGEBRA-INTRODUCTORY EXERCISE - 13.1
  1. Simplify the following : 2x^(2)+3y^(2)-5xy+5x^(2)-y^(2)+6xy-3x^(2)

    Text Solution

    |

  2. If sum of two polynomials is 5x^(2)+3x-1. If one of them is 3x^(3)-2x+...

    Text Solution

    |

  3. Multiply (1)/(2)a^(2)b-(2)/(3)ab^(2)+b by 6abc:

    Text Solution

    |

  4. Find the product of ((1)/(2)x^(2)-(1)/(3)y^(2))and((1)/(2)x^(2)+(1)/(3...

    Text Solution

    |

  5. Divide 36x^(2)y^(5)+42xy^(3)-24x^(3)y^(2)-12y^(5) by -6y^(2).

    Text Solution

    |

  6. Find the remainder when the expression 3x^(3)+8x^(2)-6x+1 is divided b...

    Text Solution

    |

  7. Find the value of a if the division of ax^(3)+9x^(2)+4x-10 by (x+3) le...

    Text Solution

    |

  8. If (x+1) and (x-2) are factors of x^(3)+ax^(2)-bx-6, then find the val...

    Text Solution

    |

  9. if (5x^2 + 14x + 2)^2 - (4x^2 - 5x + 7)^2 is divided by x^2 + x + 1, ...

    Text Solution

    |

  10. On dividing (x^(3)-6x+7) by (x+1), then the remainder is :

    Text Solution

    |

  11. When (x^(4)-3x^(3)+2x^(2)-5x+7) is divided by (x-2), then the remainde...

    Text Solution

    |

  12. If x^3 + 5x^2+10k leaves remainder -2x when divided by x^2+2 then the ...

    Text Solution

    |

  13. If (x^(11)+1) is divided by (x+1), then the remainder is :

    Text Solution

    |

  14. If 5x^3+5x^2-6x+9 is divided by (x+3) then the remainder is:

    Text Solution

    |

  15. If f(x) is divided by (2x+3), then the remainder is :

    Text Solution

    |

  16. When (x^3-2x^2+px-q) is divided by (x^2-2x-3) the remainder is (x-6)Th...

    Text Solution

    |

  17. If (x-2) is a factor of (x^(2)+3qx-2q), then the value of q is :

    Text Solution

    |

  18. Find the value of k, if (x+2) exactly divides x^(3)+6x^(2)+4x+k.

    Text Solution

    |

  19. Which one of the following is a factor of x^4-5x^3+5x^2-10x+24?

    Text Solution

    |

  20. If (x+k) is a common factor of (x^(2)+px+q) are (x^(2)+lx+m), then the...

    Text Solution

    |