Home
Class 14
MATHS
Find the product of ((1)/(2)x^(2)-(1)/(3...

Find the product of `((1)/(2)x^(2)-(1)/(3)y^(2))and((1)/(2)x^(2)+(1)/(3)y^(2))`

A

`(1)/(9)y^(4)-(1)/(4)x^(4)`

B

`(1)/(4)x^(4)-(1)/(9)y^(4)`

C

`4x^(2)-9y^(4)`

D

`(1)/(y)x^(4)-(1)/(9)y^(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the product of the expressions \(\left(\frac{1}{2}x^2 - \frac{1}{3}y^2\right)\) and \(\left(\frac{1}{2}x^2 + \frac{1}{3}y^2\right)\), we can use the difference of squares formula, which states that: \[ (a - b)(a + b) = a^2 - b^2 \] ### Step-by-Step Solution: 1. **Identify \(A\) and \(B\)**: - Let \(A = \frac{1}{2}x^2\) - Let \(B = \frac{1}{3}y^2\) 2. **Apply the difference of squares formula**: - The product can be rewritten as: \[ (A - B)(A + B) = A^2 - B^2 \] 3. **Calculate \(A^2\)**: - \(A^2 = \left(\frac{1}{2}x^2\right)^2 = \frac{1}{4}x^4\) 4. **Calculate \(B^2\)**: - \(B^2 = \left(\frac{1}{3}y^2\right)^2 = \frac{1}{9}y^4\) 5. **Subtract \(B^2\) from \(A^2\)**: - Now substitute \(A^2\) and \(B^2\) into the formula: \[ A^2 - B^2 = \frac{1}{4}x^4 - \frac{1}{9}y^4 \] 6. **Final Result**: - The final product is: \[ \frac{1}{4}x^4 - \frac{1}{9}y^4 \]
Promotional Banner

Topper's Solved these Questions

  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 13.2|22 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|47 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos

Similar Questions

Explore conceptually related problems

Find the product of the binomials: ((1)/(2)x-(1)/(5)y)((1)/(2)x-(1)/(5)y)

Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)

Find the value of (x+y) ,if (x+(y^(3))/(x^(2)))^(-1)-((x^(2))/(y)+(y^(2))/(x))^(-1)+((x^(3))/(y^(2))+y)^(-1)=(1)/(3)

"Find the value of "(x+y)," if "(x+(y^(3))/(x^(2)))^(-1)-((x^(2))/(y)+(y^(2))/(x))^(-1)+((x^(3))/(y^(2))+y)^(-1)=(1)/(3)

Find the products: (i) (2x+3y)(2x-3y) (ii) (x-1)(x+1)(x^(2)+1)(x^(4)+1)

((1)/(2)x^(2)-(1)/(2)y^(2)+(1)/(4)z^(2))-((1)/(3)x^2+(1)/(4)y^(2)+(1)/(2)z^(2))+((1)/(4)x^(2)+(1)/(3)y^(2)+(1)/(3)z^(2))

Find the products: 2x+3y)(2x-3y)(x-1)(x+1)(x^(2)+1)(x^(4)+1)

if x=(1)/(3-2sqrt(2)),y=(1)/(3+2sqrt(2)) find (a)x^(2)+y^(2)(b)x^(3)+y^(3)

(x+1)/(3)=(y+2)/(1)=(z+1)/(2) and (x-2)/(1)=(y+2)/(2)=(z-3)/(3)

Find the following products and verify the result for x=-1,y=-2:(3x-5y)(x+y)(2)(x^(2)y-1)(3-2x^(2)y)((1)/(3)x-(y^(2))/(5))((1)/(3)x+(y^(2))/(5))

ARIHANT SSC-ELEMENTS OF ALGEBRA-INTRODUCTORY EXERCISE - 13.1
  1. If sum of two polynomials is 5x^(2)+3x-1. If one of them is 3x^(3)-2x+...

    Text Solution

    |

  2. Multiply (1)/(2)a^(2)b-(2)/(3)ab^(2)+b by 6abc:

    Text Solution

    |

  3. Find the product of ((1)/(2)x^(2)-(1)/(3)y^(2))and((1)/(2)x^(2)+(1)/(3...

    Text Solution

    |

  4. Divide 36x^(2)y^(5)+42xy^(3)-24x^(3)y^(2)-12y^(5) by -6y^(2).

    Text Solution

    |

  5. Find the remainder when the expression 3x^(3)+8x^(2)-6x+1 is divided b...

    Text Solution

    |

  6. Find the value of a if the division of ax^(3)+9x^(2)+4x-10 by (x+3) le...

    Text Solution

    |

  7. If (x+1) and (x-2) are factors of x^(3)+ax^(2)-bx-6, then find the val...

    Text Solution

    |

  8. if (5x^2 + 14x + 2)^2 - (4x^2 - 5x + 7)^2 is divided by x^2 + x + 1, ...

    Text Solution

    |

  9. On dividing (x^(3)-6x+7) by (x+1), then the remainder is :

    Text Solution

    |

  10. When (x^(4)-3x^(3)+2x^(2)-5x+7) is divided by (x-2), then the remainde...

    Text Solution

    |

  11. If x^3 + 5x^2+10k leaves remainder -2x when divided by x^2+2 then the ...

    Text Solution

    |

  12. If (x^(11)+1) is divided by (x+1), then the remainder is :

    Text Solution

    |

  13. If 5x^3+5x^2-6x+9 is divided by (x+3) then the remainder is:

    Text Solution

    |

  14. If f(x) is divided by (2x+3), then the remainder is :

    Text Solution

    |

  15. When (x^3-2x^2+px-q) is divided by (x^2-2x-3) the remainder is (x-6)Th...

    Text Solution

    |

  16. If (x-2) is a factor of (x^(2)+3qx-2q), then the value of q is :

    Text Solution

    |

  17. Find the value of k, if (x+2) exactly divides x^(3)+6x^(2)+4x+k.

    Text Solution

    |

  18. Which one of the following is a factor of x^4-5x^3+5x^2-10x+24?

    Text Solution

    |

  19. If (x+k) is a common factor of (x^(2)+px+q) are (x^(2)+lx+m), then the...

    Text Solution

    |

  20. If x-a is a factor of x^3-3x^2a+2a^2x+b , then the value of b is 0 (b)...

    Text Solution

    |