Home
Class 14
MATHS
If (x-(1)/(x))=4, then the value of (x^(...

If `(x-(1)/(x))=4`, then the value of `(x^(2)+(1)/(x^(2)))` is :

A

16

B

18

C

14

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x - \frac{1}{x} = 4 \) and find the value of \( x^2 + \frac{1}{x^2} \), we can follow these steps: ### Step 1: Start with the given equation We have: \[ x - \frac{1}{x} = 4 \] ### Step 2: Square both sides Squaring both sides of the equation gives us: \[ \left( x - \frac{1}{x} \right)^2 = 4^2 \] This simplifies to: \[ x^2 - 2 \cdot x \cdot \frac{1}{x} + \frac{1}{x^2} = 16 \] which further simplifies to: \[ x^2 - 2 + \frac{1}{x^2} = 16 \] ### Step 3: Rearranging the equation Now, we can rearrange the equation to isolate \( x^2 + \frac{1}{x^2} \): \[ x^2 + \frac{1}{x^2} - 2 = 16 \] Adding 2 to both sides gives: \[ x^2 + \frac{1}{x^2} = 16 + 2 \] ### Step 4: Final calculation Thus, we find: \[ x^2 + \frac{1}{x^2} = 18 \] ### Conclusion The value of \( x^2 + \frac{1}{x^2} \) is \( 18 \). ---
Promotional Banner

Topper's Solved these Questions

  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 13.2|22 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|47 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos

Similar Questions

Explore conceptually related problems

If x+(1)/(x)=4, find the values of x^(2)+(1)/(x^(2))

If (x-(1)/(x))=4 , find the value of (i)(x^(2)+(1)/(x^(2))), (ii)(x^(4)+(1)/(x^(4)))

If 2x+(1)/(4x)=1, then the value of x^(2)+(1)/(64x^(2)) is

if x-(1)/(x)=2, then the value of x^(4)+(1)/(x^(4)) is

If x^(2)+(1)/(x^(2))=62, then the value of x^(4)+(1)/(x^(4)) is

If x-(1)/(x)=1 , then the value of (x^(4)-(1)/(x^(2)))/(3x^(2)+5x-3) is

ARIHANT SSC-ELEMENTS OF ALGEBRA-INTRODUCTORY EXERCISE - 13.1
  1. If the polynomial f(x) is such that f(-3)=0, then a factor of f(x) is ...

    Text Solution

    |

  2. If x+1/x=2 then x^2+1/x^2 is equal to

    Text Solution

    |

  3. If (x-(1)/(x))=4, then the value of (x^(2)+(1)/(x^(2))) is :

    Text Solution

    |

  4. If (x+(1)/(x))=2sqrt3, then the value of (x^(3)-(1)/(x^(3))) is :

    Text Solution

    |

  5. If (x+(1)/(x))=3, then the value of (x^(3)+(1)/(x^(3))) is equal to :

    Text Solution

    |

  6. If (x+(1)/(x))=2, then the value of (x^(6)+(1)/(x^(6))) is :

    Text Solution

    |

  7. If (x^(2)+(1)/(x^(2)))=6, then the value of (x+(1)/(x)) is :

    Text Solution

    |

  8. if x^3-1/x^3=36 then find the value of x-1/x

    Text Solution

    |

  9. If (x^(3)+(1)/(x^(3)))=2, then the value of (x+(1)/(x)) is :

    Text Solution

    |

  10. If (x^(4)+(1)/(x^(4)))=34, then the value of (x-(1)/(x)) is :

    Text Solution

    |

  11. If x^4+1/(x^4)=119 , find the value of x^3-1/(x^3)

    Text Solution

    |

  12. If (3x-(2)/(x))=5, then the value of (9x^(2)-(4)/(x^(2))) is :

    Text Solution

    |

  13. If m^(2)-4m+1=0, then the value of (m^(3)+(1)/(m^(3))) is :

    Text Solution

    |

  14. If x+y=13 and xy = 40, then the value of (x^(2)+y^(2)) is :

    Text Solution

    |

  15. If (x+y)=13 and xy=36, then the value of (x^(3)+y^(3)) is :

    Text Solution

    |

  16. If (x+y)=13 and xy=36, then the value of (x^(3)+y^(3)) is :

    Text Solution

    |

  17. If (x+y+z)=6 and (xy+yz+zx)=11, then the value of (x^(3)+y^(3)+z^(3)-3...

    Text Solution

    |

  18. If x+y+z=0 then find the value of x^(3)+y^(3)+z^(3)

    Text Solution

    |

  19. If a^(1//3)+b^(1//3)+c^(1//3)=0, then :

    Text Solution

    |

  20. If 2^(x)-2^(x-1)=8, then the value of x^(3) is :

    Text Solution

    |