Home
Class 14
MATHS
If (x+(1)/(x))=2sqrt3, then the value of...

If `(x+(1)/(x))=2sqrt3`, then the value of `(x^(3)-(1)/(x^(3)))` is :

A

`12sqrt3`

B

18

C

`18sqrt3`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^3 - \frac{1}{x^3} \) given that \( x + \frac{1}{x} = 2\sqrt{3} \). ### Step-by-Step Solution: 1. **Start with the given equation**: \[ x + \frac{1}{x} = 2\sqrt{3} \] 2. **Square both sides**: \[ \left( x + \frac{1}{x} \right)^2 = (2\sqrt{3})^2 \] This simplifies to: \[ x^2 + 2 + \frac{1}{x^2} = 12 \] 3. **Rearrange the equation**: \[ x^2 + \frac{1}{x^2} = 12 - 2 = 10 \] 4. **Use the identity for \( x^3 - \frac{1}{x^3} \)**: The identity states: \[ x^3 - \frac{1}{x^3} = \left( x + \frac{1}{x} \right) \left( x^2 - 1 + \frac{1}{x^2} \right) \] We already have \( x + \frac{1}{x} = 2\sqrt{3} \) and we need \( x^2 - 1 + \frac{1}{x^2} \). 5. **Calculate \( x^2 - 1 + \frac{1}{x^2} \)**: From step 3, we know: \[ x^2 + \frac{1}{x^2} = 10 \] Thus: \[ x^2 - 1 + \frac{1}{x^2} = 10 - 1 = 9 \] 6. **Substitute back into the identity**: Now substitute back into the identity: \[ x^3 - \frac{1}{x^3} = (2\sqrt{3})(9) \] This simplifies to: \[ x^3 - \frac{1}{x^3} = 18\sqrt{3} \] ### Final Answer: \[ x^3 - \frac{1}{x^3} = 18\sqrt{3} \]
Promotional Banner

Topper's Solved these Questions

  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 13.2|22 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|47 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos

Similar Questions

Explore conceptually related problems

If x-(1)/(x)=3+2sqrt(2), find the value of x^(3)-(1)/(x^(3))

If x-(1)/(x)=3+2sqrt(2), find the value of x^(3)-(1)/(x^(3))

If x=sqrt3 +sqrt2 then the value of of x^(3)-(1)/(x^(3)) is

if x=2-sqrt(3), find the value of (x-(1)/(x))^(3)

If x=2+sqrt(3), then the value of sqrt(x)+(1)/(sqrt(x)) is:

ARIHANT SSC-ELEMENTS OF ALGEBRA-INTRODUCTORY EXERCISE - 13.1
  1. If x+1/x=2 then x^2+1/x^2 is equal to

    Text Solution

    |

  2. If (x-(1)/(x))=4, then the value of (x^(2)+(1)/(x^(2))) is :

    Text Solution

    |

  3. If (x+(1)/(x))=2sqrt3, then the value of (x^(3)-(1)/(x^(3))) is :

    Text Solution

    |

  4. If (x+(1)/(x))=3, then the value of (x^(3)+(1)/(x^(3))) is equal to :

    Text Solution

    |

  5. If (x+(1)/(x))=2, then the value of (x^(6)+(1)/(x^(6))) is :

    Text Solution

    |

  6. If (x^(2)+(1)/(x^(2)))=6, then the value of (x+(1)/(x)) is :

    Text Solution

    |

  7. if x^3-1/x^3=36 then find the value of x-1/x

    Text Solution

    |

  8. If (x^(3)+(1)/(x^(3)))=2, then the value of (x+(1)/(x)) is :

    Text Solution

    |

  9. If (x^(4)+(1)/(x^(4)))=34, then the value of (x-(1)/(x)) is :

    Text Solution

    |

  10. If x^4+1/(x^4)=119 , find the value of x^3-1/(x^3)

    Text Solution

    |

  11. If (3x-(2)/(x))=5, then the value of (9x^(2)-(4)/(x^(2))) is :

    Text Solution

    |

  12. If m^(2)-4m+1=0, then the value of (m^(3)+(1)/(m^(3))) is :

    Text Solution

    |

  13. If x+y=13 and xy = 40, then the value of (x^(2)+y^(2)) is :

    Text Solution

    |

  14. If (x+y)=13 and xy=36, then the value of (x^(3)+y^(3)) is :

    Text Solution

    |

  15. If (x+y)=13 and xy=36, then the value of (x^(3)+y^(3)) is :

    Text Solution

    |

  16. If (x+y+z)=6 and (xy+yz+zx)=11, then the value of (x^(3)+y^(3)+z^(3)-3...

    Text Solution

    |

  17. If x+y+z=0 then find the value of x^(3)+y^(3)+z^(3)

    Text Solution

    |

  18. If a^(1//3)+b^(1//3)+c^(1//3)=0, then :

    Text Solution

    |

  19. If 2^(x)-2^(x-1)=8, then the value of x^(3) is :

    Text Solution

    |

  20. If 3^(x)+3^(x+1)=36, then the value of x^(x) is :

    Text Solution

    |