Home
Class 14
MATHS
If (x+(1)/(x))=3, then the value of (x^(...

If `(x+(1)/(x))=3`, then the value of `(x^(3)+(1)/(x^(3)))` is equal to :

A

`18sqrt3`

B

18

C

`9sqrt3`

D

12

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: 1. **Given:** \[ x + \frac{1}{x} = 3 \] 2. **Cube both sides:** \[ \left(x + \frac{1}{x}\right)^3 = 3^3 \] This simplifies to: \[ \left(x + \frac{1}{x}\right)^3 = 27 \] 3. **Expand the left-hand side using the formula for the cube of a binomial:** \[ a^3 + b^3 + 3ab(a + b) \] Here, \(a = x\) and \(b = \frac{1}{x}\). Thus, we have: \[ x^3 + \left(\frac{1}{x}\right)^3 + 3\left(x \cdot \frac{1}{x}\right)\left(x + \frac{1}{x}\right) \] Since \(x \cdot \frac{1}{x} = 1\), this simplifies to: \[ x^3 + \frac{1}{x^3} + 3\left(x + \frac{1}{x}\right) \] 4. **Substituting the value of \(x + \frac{1}{x}\):** \[ x^3 + \frac{1}{x^3} + 3 \cdot 3 = 27 \] This simplifies to: \[ x^3 + \frac{1}{x^3} + 9 = 27 \] 5. **Isolate \(x^3 + \frac{1}{x^3}\):** \[ x^3 + \frac{1}{x^3} = 27 - 9 \] Therefore: \[ x^3 + \frac{1}{x^3} = 18 \] So, the final answer is: \[ \boxed{18} \]
Promotional Banner

Topper's Solved these Questions

  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 13.2|22 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|47 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos

Similar Questions

Explore conceptually related problems

If x-(1)/(x)=1, then the value of x^(3)-(1)/(x^(3)) is equal to (a)2(b)3(c)4(d)8

If x(3-2/x)=3/x , then the value of x^3-(1)/(x^3) is equal to:

If x^(2) - 3x + 1 = 0 , then the value of x^(3) + (1)/(x^(3)) is equal to

if x+(1)/(x)=3 then value of x^(3)+(1)/(x^(3))

If (x+1/x)=3 the the value of (x^3+1/x^3) is equal to

ARIHANT SSC-ELEMENTS OF ALGEBRA-INTRODUCTORY EXERCISE - 13.1
  1. If (x-(1)/(x))=4, then the value of (x^(2)+(1)/(x^(2))) is :

    Text Solution

    |

  2. If (x+(1)/(x))=2sqrt3, then the value of (x^(3)-(1)/(x^(3))) is :

    Text Solution

    |

  3. If (x+(1)/(x))=3, then the value of (x^(3)+(1)/(x^(3))) is equal to :

    Text Solution

    |

  4. If (x+(1)/(x))=2, then the value of (x^(6)+(1)/(x^(6))) is :

    Text Solution

    |

  5. If (x^(2)+(1)/(x^(2)))=6, then the value of (x+(1)/(x)) is :

    Text Solution

    |

  6. if x^3-1/x^3=36 then find the value of x-1/x

    Text Solution

    |

  7. If (x^(3)+(1)/(x^(3)))=2, then the value of (x+(1)/(x)) is :

    Text Solution

    |

  8. If (x^(4)+(1)/(x^(4)))=34, then the value of (x-(1)/(x)) is :

    Text Solution

    |

  9. If x^4+1/(x^4)=119 , find the value of x^3-1/(x^3)

    Text Solution

    |

  10. If (3x-(2)/(x))=5, then the value of (9x^(2)-(4)/(x^(2))) is :

    Text Solution

    |

  11. If m^(2)-4m+1=0, then the value of (m^(3)+(1)/(m^(3))) is :

    Text Solution

    |

  12. If x+y=13 and xy = 40, then the value of (x^(2)+y^(2)) is :

    Text Solution

    |

  13. If (x+y)=13 and xy=36, then the value of (x^(3)+y^(3)) is :

    Text Solution

    |

  14. If (x+y)=13 and xy=36, then the value of (x^(3)+y^(3)) is :

    Text Solution

    |

  15. If (x+y+z)=6 and (xy+yz+zx)=11, then the value of (x^(3)+y^(3)+z^(3)-3...

    Text Solution

    |

  16. If x+y+z=0 then find the value of x^(3)+y^(3)+z^(3)

    Text Solution

    |

  17. If a^(1//3)+b^(1//3)+c^(1//3)=0, then :

    Text Solution

    |

  18. If 2^(x)-2^(x-1)=8, then the value of x^(3) is :

    Text Solution

    |

  19. If 3^(x)+3^(x+1)=36, then the value of x^(x) is :

    Text Solution

    |

  20. If a and b are non zero rational unequal numbers, then ((a+b)^(2)-(a-b...

    Text Solution

    |