Home
Class 14
MATHS
If (x+(1)/(x))=2, then the value of (x^(...

If `(x+(1)/(x))=2`, then the value of `(x^(6)+(1)/(x^(6)))` is :

A

2

B

4

C

8

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^6 + \frac{1}{x^6} \) given that \( x + \frac{1}{x} = 2 \). ### Step-by-step Solution: 1. **Start with the given equation:** \[ x + \frac{1}{x} = 2 \] 2. **Cube both sides:** \[ \left( x + \frac{1}{x} \right)^3 = 2^3 \] This gives us: \[ x^3 + \frac{1}{x^3} + 3\left( x + \frac{1}{x} \right) = 8 \] 3. **Substitute the value of \( x + \frac{1}{x} \):** \[ x^3 + \frac{1}{x^3} + 3 \cdot 2 = 8 \] Simplifying this: \[ x^3 + \frac{1}{x^3} + 6 = 8 \] 4. **Isolate \( x^3 + \frac{1}{x^3} \):** \[ x^3 + \frac{1}{x^3} = 8 - 6 = 2 \] 5. **Square both sides to find \( x^6 + \frac{1}{x^6} \):** \[ \left( x^3 + \frac{1}{x^3} \right)^2 = 2^2 \] This expands to: \[ x^6 + \frac{1}{x^6} + 2 = 4 \] 6. **Isolate \( x^6 + \frac{1}{x^6} \):** \[ x^6 + \frac{1}{x^6} = 4 - 2 = 2 \] ### Final Answer: \[ x^6 + \frac{1}{x^6} = 2 \]
Promotional Banner

Topper's Solved these Questions

  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 13.2|22 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|47 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos

Similar Questions

Explore conceptually related problems

If x+(1)/(x)=3 ,then find the value of x^(6)+(1)/(x^(6)) .

If (x^(2)+(1)/(x^(2)))=6 , then the value of (x+(1)/(x)) is :

If x^(3/2)+x^(-3/2)=3 then the value of x^(6)+(1)/(x^(6)) is

If x+(1)/(x)=6 find the value of x^(2)+(1)/(x^(2))=?

If x^(2)+(1)/(x^(2))=6 then find the value of x^(4)+(1)/(x^(4))

ARIHANT SSC-ELEMENTS OF ALGEBRA-INTRODUCTORY EXERCISE - 13.1
  1. If (x+(1)/(x))=2sqrt3, then the value of (x^(3)-(1)/(x^(3))) is :

    Text Solution

    |

  2. If (x+(1)/(x))=3, then the value of (x^(3)+(1)/(x^(3))) is equal to :

    Text Solution

    |

  3. If (x+(1)/(x))=2, then the value of (x^(6)+(1)/(x^(6))) is :

    Text Solution

    |

  4. If (x^(2)+(1)/(x^(2)))=6, then the value of (x+(1)/(x)) is :

    Text Solution

    |

  5. if x^3-1/x^3=36 then find the value of x-1/x

    Text Solution

    |

  6. If (x^(3)+(1)/(x^(3)))=2, then the value of (x+(1)/(x)) is :

    Text Solution

    |

  7. If (x^(4)+(1)/(x^(4)))=34, then the value of (x-(1)/(x)) is :

    Text Solution

    |

  8. If x^4+1/(x^4)=119 , find the value of x^3-1/(x^3)

    Text Solution

    |

  9. If (3x-(2)/(x))=5, then the value of (9x^(2)-(4)/(x^(2))) is :

    Text Solution

    |

  10. If m^(2)-4m+1=0, then the value of (m^(3)+(1)/(m^(3))) is :

    Text Solution

    |

  11. If x+y=13 and xy = 40, then the value of (x^(2)+y^(2)) is :

    Text Solution

    |

  12. If (x+y)=13 and xy=36, then the value of (x^(3)+y^(3)) is :

    Text Solution

    |

  13. If (x+y)=13 and xy=36, then the value of (x^(3)+y^(3)) is :

    Text Solution

    |

  14. If (x+y+z)=6 and (xy+yz+zx)=11, then the value of (x^(3)+y^(3)+z^(3)-3...

    Text Solution

    |

  15. If x+y+z=0 then find the value of x^(3)+y^(3)+z^(3)

    Text Solution

    |

  16. If a^(1//3)+b^(1//3)+c^(1//3)=0, then :

    Text Solution

    |

  17. If 2^(x)-2^(x-1)=8, then the value of x^(3) is :

    Text Solution

    |

  18. If 3^(x)+3^(x+1)=36, then the value of x^(x) is :

    Text Solution

    |

  19. If a and b are non zero rational unequal numbers, then ((a+b)^(2)-(a-b...

    Text Solution

    |

  20. If (x)/((b-c)(b+c-2a))=(y)/((c-a)(c+a-2b))=(z)/((a-b)(a+b-2c)) then th...

    Text Solution

    |