Home
Class 14
MATHS
If (x^(2)+(1)/(x^(2)))=6, then the value...

If `(x^(2)+(1)/(x^(2)))=6`, then the value of `(x+(1)/(x))` is :

A

2

B

3

C

`-2`

D

both (a) and (c)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 + \frac{1}{x^2} = 6 \) and find the value of \( x + \frac{1}{x} \), we can follow these steps: ### Step 1: Let \( y = x + \frac{1}{x} \) We start by defining a new variable \( y \) such that: \[ y = x + \frac{1}{x} \] ### Step 2: Relate \( y \) to \( x^2 + \frac{1}{x^2} \) We know from algebra that: \[ x^2 + \frac{1}{x^2} = \left( x + \frac{1}{x} \right)^2 - 2 \] This means we can express \( x^2 + \frac{1}{x^2} \) in terms of \( y \): \[ x^2 + \frac{1}{x^2} = y^2 - 2 \] ### Step 3: Substitute the given value Given that \( x^2 + \frac{1}{x^2} = 6 \), we can substitute this into our equation: \[ y^2 - 2 = 6 \] ### Step 4: Solve for \( y^2 \) Now, we solve for \( y^2 \): \[ y^2 = 6 + 2 \] \[ y^2 = 8 \] ### Step 5: Take the square root Next, we take the square root of both sides to find \( y \): \[ y = \sqrt{8} \quad \text{or} \quad y = -\sqrt{8} \] Since \( \sqrt{8} = 2\sqrt{2} \), we have: \[ y = 2\sqrt{2} \quad \text{or} \quad y = -2\sqrt{2} \] ### Step 6: Conclusion Thus, the value of \( x + \frac{1}{x} \) can be either: \[ x + \frac{1}{x} = 2\sqrt{2} \quad \text{or} \quad x + \frac{1}{x} = -2\sqrt{2} \] ### Final Answer The value of \( x + \frac{1}{x} \) is \( 2\sqrt{2} \) or \( -2\sqrt{2} \). ---
Promotional Banner

Topper's Solved these Questions

  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 13.2|22 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|47 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos

Similar Questions

Explore conceptually related problems

If x^(2)+(1)/(x^(2))=6 then find the value of x^(4)+(1)/(x^(4))

If (x+(1)/(x))=2 , then the value of (x^(6)+(1)/(x^(6))) is :

If x^(3/2)+x^(-3/2)=3 then the value of x^(6)+(1)/(x^(6)) is

If x(x-2)= 1 , then the value of x^(2) + (1)/(x^(2)) is .

ARIHANT SSC-ELEMENTS OF ALGEBRA-INTRODUCTORY EXERCISE - 13.1
  1. If (x+(1)/(x))=3, then the value of (x^(3)+(1)/(x^(3))) is equal to :

    Text Solution

    |

  2. If (x+(1)/(x))=2, then the value of (x^(6)+(1)/(x^(6))) is :

    Text Solution

    |

  3. If (x^(2)+(1)/(x^(2)))=6, then the value of (x+(1)/(x)) is :

    Text Solution

    |

  4. if x^3-1/x^3=36 then find the value of x-1/x

    Text Solution

    |

  5. If (x^(3)+(1)/(x^(3)))=2, then the value of (x+(1)/(x)) is :

    Text Solution

    |

  6. If (x^(4)+(1)/(x^(4)))=34, then the value of (x-(1)/(x)) is :

    Text Solution

    |

  7. If x^4+1/(x^4)=119 , find the value of x^3-1/(x^3)

    Text Solution

    |

  8. If (3x-(2)/(x))=5, then the value of (9x^(2)-(4)/(x^(2))) is :

    Text Solution

    |

  9. If m^(2)-4m+1=0, then the value of (m^(3)+(1)/(m^(3))) is :

    Text Solution

    |

  10. If x+y=13 and xy = 40, then the value of (x^(2)+y^(2)) is :

    Text Solution

    |

  11. If (x+y)=13 and xy=36, then the value of (x^(3)+y^(3)) is :

    Text Solution

    |

  12. If (x+y)=13 and xy=36, then the value of (x^(3)+y^(3)) is :

    Text Solution

    |

  13. If (x+y+z)=6 and (xy+yz+zx)=11, then the value of (x^(3)+y^(3)+z^(3)-3...

    Text Solution

    |

  14. If x+y+z=0 then find the value of x^(3)+y^(3)+z^(3)

    Text Solution

    |

  15. If a^(1//3)+b^(1//3)+c^(1//3)=0, then :

    Text Solution

    |

  16. If 2^(x)-2^(x-1)=8, then the value of x^(3) is :

    Text Solution

    |

  17. If 3^(x)+3^(x+1)=36, then the value of x^(x) is :

    Text Solution

    |

  18. If a and b are non zero rational unequal numbers, then ((a+b)^(2)-(a-b...

    Text Solution

    |

  19. If (x)/((b-c)(b+c-2a))=(y)/((c-a)(c+a-2b))=(z)/((a-b)(a+b-2c)) then th...

    Text Solution

    |

  20. (a^(4)+5a^(3)+6a^(2)) is equal to :

    Text Solution

    |