Home
Class 14
MATHS
If (x^(4)+(1)/(x^(4)))=34, then the valu...

If `(x^(4)+(1)/(x^(4)))=34`, then the value of `(x-(1)/(x))` is :

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^4 + \frac{1}{x^4} = 34 \) and find the value of \( x - \frac{1}{x} \), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ x^4 + \frac{1}{x^4} = 34 \] ### Step 2: Add 2 to both sides We add 2 to both sides of the equation: \[ x^4 + \frac{1}{x^4} + 2 = 34 + 2 \] This simplifies to: \[ x^4 + \frac{1}{x^4} + 2 = 36 \] ### Step 3: Recognize the identity We can use the identity: \[ a^2 + b^2 + 2ab = (a + b)^2 \] In our case, let \( a = x^2 \) and \( b = \frac{1}{x^2} \). Thus, we can rewrite the left side: \[ (x^2 + \frac{1}{x^2})^2 = 36 \] ### Step 4: Take the square root Taking the square root of both sides gives us: \[ x^2 + \frac{1}{x^2} = 6 \quad \text{(since both sides are positive)} \] ### Step 5: Subtract 2 from both sides Now, we subtract 2 from both sides: \[ x^2 + \frac{1}{x^2} - 2 = 6 - 2 \] This simplifies to: \[ x^2 + \frac{1}{x^2} - 2 = 4 \] ### Step 6: Recognize another identity We can again use the identity: \[ a^2 + b^2 - 2ab = (a - b)^2 \] Let \( a = x \) and \( b = \frac{1}{x} \). Thus, we can rewrite the left side: \[ (x - \frac{1}{x})^2 = 4 \] ### Step 7: Take the square root again Taking the square root of both sides gives us: \[ x - \frac{1}{x} = 2 \quad \text{or} \quad x - \frac{1}{x} = -2 \] ### Conclusion The value of \( x - \frac{1}{x} \) can be either 2 or -2. However, since we are looking for a positive value, we take: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 13.2|22 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|47 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos

Similar Questions

Explore conceptually related problems

If x<0 and x^(4)+(1)/(x^(4))=47, then the value of x^(3)+(1)/(x^(3)) is

If (x-(1)/(x))=4 , then the value of (x^(2)+(1)/(x^(2))) is :

If x is real and x^(4)+(1)/(x^(4))=119 , then value of (x-(1)/(x)) is

If (x^4+1/x^4)=34 then the value of (x-1/x)^2 is:

if x-(1)/(x)=2, then the value of x^(4)+(1)/(x^(4)) is

If (x-(1)/(x))=2, then the value of (x^(4)+(1)/(x^(4))) is (a) 4(b)8(c)12 (d) 34

ARIHANT SSC-ELEMENTS OF ALGEBRA-INTRODUCTORY EXERCISE - 13.1
  1. if x^3-1/x^3=36 then find the value of x-1/x

    Text Solution

    |

  2. If (x^(3)+(1)/(x^(3)))=2, then the value of (x+(1)/(x)) is :

    Text Solution

    |

  3. If (x^(4)+(1)/(x^(4)))=34, then the value of (x-(1)/(x)) is :

    Text Solution

    |

  4. If x^4+1/(x^4)=119 , find the value of x^3-1/(x^3)

    Text Solution

    |

  5. If (3x-(2)/(x))=5, then the value of (9x^(2)-(4)/(x^(2))) is :

    Text Solution

    |

  6. If m^(2)-4m+1=0, then the value of (m^(3)+(1)/(m^(3))) is :

    Text Solution

    |

  7. If x+y=13 and xy = 40, then the value of (x^(2)+y^(2)) is :

    Text Solution

    |

  8. If (x+y)=13 and xy=36, then the value of (x^(3)+y^(3)) is :

    Text Solution

    |

  9. If (x+y)=13 and xy=36, then the value of (x^(3)+y^(3)) is :

    Text Solution

    |

  10. If (x+y+z)=6 and (xy+yz+zx)=11, then the value of (x^(3)+y^(3)+z^(3)-3...

    Text Solution

    |

  11. If x+y+z=0 then find the value of x^(3)+y^(3)+z^(3)

    Text Solution

    |

  12. If a^(1//3)+b^(1//3)+c^(1//3)=0, then :

    Text Solution

    |

  13. If 2^(x)-2^(x-1)=8, then the value of x^(3) is :

    Text Solution

    |

  14. If 3^(x)+3^(x+1)=36, then the value of x^(x) is :

    Text Solution

    |

  15. If a and b are non zero rational unequal numbers, then ((a+b)^(2)-(a-b...

    Text Solution

    |

  16. If (x)/((b-c)(b+c-2a))=(y)/((c-a)(c+a-2b))=(z)/((a-b)(a+b-2c)) then th...

    Text Solution

    |

  17. (a^(4)+5a^(3)+6a^(2)) is equal to :

    Text Solution

    |

  18. The factors of (x^(4)+16) are :

    Text Solution

    |

  19. If (a^(3//2)-ab^(1//2)+a^(1//2)b-b^(3//2)) is divided by (a^(1//2)-b^(...

    Text Solution

    |

  20. The factors of x(y^(2)-z^(2))+y(z^(2)-x^(2))+z(x^(2)-y^(2)) are :

    Text Solution

    |