Home
Class 14
MATHS
If (x+y+z)=6 and (xy+yz+zx)=11, then the...

If `(x+y+z)=6 and (xy+yz+zx)=11`, then the value of `(x^(3)+y^(3)+z^(3)-3xyz)` is :

A

81

B

54

C

18

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^3 + y^3 + z^3 - 3xyz \) given that \( x + y + z = 6 \) and \( xy + yz + zx = 11 \). ### Step-by-Step Solution: 1. **Use the identity for \( x^3 + y^3 + z^3 - 3xyz \)**: The identity we will use is: \[ x^3 + y^3 + z^3 - 3xyz = (x + y + z) \left( x^2 + y^2 + z^2 - xy - yz - zx \right) \] 2. **Substitute the known values**: We know \( x + y + z = 6 \) and \( xy + yz + zx = 11 \). We need to find \( x^2 + y^2 + z^2 \). 3. **Find \( x^2 + y^2 + z^2 \)**: We can find \( x^2 + y^2 + z^2 \) using the square of the sum: \[ (x + y + z)^2 = x^2 + y^2 + z^2 + 2(xy + yz + zx) \] Substituting the known values: \[ 6^2 = x^2 + y^2 + z^2 + 2 \cdot 11 \] This simplifies to: \[ 36 = x^2 + y^2 + z^2 + 22 \] Therefore: \[ x^2 + y^2 + z^2 = 36 - 22 = 14 \] 4. **Substitute back into the identity**: Now we can substitute \( x^2 + y^2 + z^2 \) back into the identity: \[ x^3 + y^3 + z^3 - 3xyz = (x + y + z) \left( x^2 + y^2 + z^2 - xy - yz - zx \right) \] We already have: - \( x + y + z = 6 \) - \( x^2 + y^2 + z^2 = 14 \) - \( xy + yz + zx = 11 \) Thus: \[ x^2 + y^2 + z^2 - xy - yz - zx = 14 - 11 = 3 \] 5. **Calculate \( x^3 + y^3 + z^3 - 3xyz \)**: Now substituting everything back: \[ x^3 + y^3 + z^3 - 3xyz = 6 \cdot 3 = 18 \] ### Final Answer: The value of \( x^3 + y^3 + z^3 - 3xyz \) is \( \boxed{18} \).
Promotional Banner

Topper's Solved these Questions

  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 13.2|22 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|47 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos

Similar Questions

Explore conceptually related problems

If x+y+z=6 and xy+yz +zx =11 then what is the vlaue of x^(3) +y^(3)+z^(3) -3xyz ?

If x+y+z=6 and xy+zx+zy=10 then find the value of x^(3)+y^(3)+z^(3)-3xyz .

If x+y+z=8 and xy+yz+zx=20 find the value of x^(3)+y^(3)+z^(3)-3xyz

If x + y + z = 19, xy + yz + zx = 114, then the value of sqrt(x^3+y^3+z^3-3xyz) is: यदि x + y + z = 19, xy + yz + zx = 114 है, तो sqrt(x^3+y^3+z^3-3xyz) का मान क्या होगा ?

If x+y+z=19, xyz=216 and xy+yz+zx=114, then the value of sqrt(x^3 + y^3 + z^3 + xyz) is:

If x + y + z = 19 , xyz = 216 and xy + yz + zx = 114, then the value of sqrt(x^3+y^3+z^3+ xyz) is : यदि x + y + z = 19 , xyz = 216 और xy + yz + zx = 114 है, तो sqrt(x^3+y^3+z^3+ xyz) का मान क्या होगा ?