Home
Class 14
MATHS
If a^(1//3)+b^(1//3)+c^(1//3)=0, then :...

If `a^(1//3)+b^(1//3)+c^(1//3)=0`, then :

A

`a+b+c=0`

B

`a+b+c=3abc`

C

`a^(3)+b^(3)+c^(3)=0`

D

`(a+b+c)^(3)=27abc`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a^{1/3} + b^{1/3} + c^{1/3} = 0 \), we can use the identity for the sum of cubes. ### Step-by-Step Solution: 1. **Let \( x = a^{1/3} \), \( y = b^{1/3} \), and \( z = c^{1/3} \)**: \[ x + y + z = 0 \] 2. **Use the identity for the sum of cubes**: The identity states: \[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - xz - yz) \] Since \( x + y + z = 0 \), we can simplify this to: \[ x^3 + y^3 + z^3 = 3xyz \] 3. **Substituting back**: We have: \[ a + b + c = 3 \cdot (a^{1/3} \cdot b^{1/3} \cdot c^{1/3}) \] This means: \[ a + b + c = 3 \sqrt[3]{abc} \] 4. **Conclusion**: Therefore, if \( a^{1/3} + b^{1/3} + c^{1/3} = 0 \), then: \[ a + b + c = 3 \sqrt[3]{abc} \]
Promotional Banner

Topper's Solved these Questions

  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 13.2|22 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|47 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos

Similar Questions

Explore conceptually related problems

If a+b+c=1,a^(2)+b^(2)+c^(2)=9 and a^(3)+b^(3)+c^(3)=1, then (1)/(a)+(1)/(b)+(1)/(c) is (i)0 (ii) -1(iii)1(iv)3

The straight lines 4ax+3by+c=0, where a+b+c are concurrent at the point a )(4,3) b) (1/4,1/3) c) (1/2,1/3) d) none of these

If (3a+1)^(2) +(b-1)^(2) +(2c-3)^(2)=0 , then value of (3a+b+2c) is

In A B C , if the orthocentre is (1,2) and the circumcenter is (0, 0), then centroid of A B C) is (1/2,2/3) (b) (1/3,2/3) (2/3,1) (d) none of these

If a+2b+3c=1 and a>0,b>0,c>0 and the greatest value of a^(3)b^(2)c is (1)/(k) then (k-5180) is

Suppose a,b,c, gt0 and |(a^(3)-1,a^(2),a),(b^(3)-1,b^(2),b),(c^(3)-1,c^(2),c)|=0 then least possible value of a+b+c is ____________

If a^(3) =1+7, 3^(3) = 1+7+b, 4^(3) = 1+7 +c , then the value of a+ b+ c is

Prove that : tan^(-1)( (a^3 -b^3)/(1+a^3 b^3)) + tan^(-1)( (b^3 - c^3)/(1+b^3 c^3)) + tan^(-1)( (c^3 - a^3)/(1+c^3 a^3)) = 0