Home
Class 14
MATHS
If a and b are non zero rational unequal...

If a and b are non zero rational unequal numbers, then `((a+b)^(2)-(a-b)^(2))/(a^(2)b-ab^(2))` is equal to :

A

`(1)/(a-b)`

B

`(2)/(a-b)`

C

`(4)/(a-b)`

D

`(1)/(ab)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{(a+b)^2 - (a-b)^2}{a^2b - ab^2}\), we will follow these steps: ### Step 1: Expand the Numerator First, we need to expand \((a+b)^2\) and \((a-b)^2\). \[ (a+b)^2 = a^2 + 2ab + b^2 \] \[ (a-b)^2 = a^2 - 2ab + b^2 \] ### Step 2: Substitute the Expansions into the Numerator Now, substitute these expansions into the numerator: \[ (a+b)^2 - (a-b)^2 = (a^2 + 2ab + b^2) - (a^2 - 2ab + b^2) \] ### Step 3: Simplify the Numerator Now simplify the expression: \[ = a^2 + 2ab + b^2 - a^2 + 2ab - b^2 \] \[ = 4ab \] ### Step 4: Expand the Denominator Next, we need to simplify the denominator \(a^2b - ab^2\): \[ a^2b - ab^2 = ab(a - b) \] ### Step 5: Combine the Results Now we can substitute the simplified numerator and denominator back into the original expression: \[ \frac{(a+b)^2 - (a-b)^2}{a^2b - ab^2} = \frac{4ab}{ab(a-b)} \] ### Step 6: Simplify the Expression Now, we can simplify the fraction: \[ = \frac{4ab}{ab(a-b)} = \frac{4}{a-b} \] ### Final Result Thus, the expression simplifies to: \[ \frac{4}{a-b} \]
Promotional Banner

Topper's Solved these Questions

  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 13.2|22 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|47 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos

Similar Questions

Explore conceptually related problems

If (1)/(a)+(1)/(b)+(1)/(c)=0, where a,b and c are non-zero real numbers,then (a^(2)+b^(2)+c^(2)-ab-bc-ca)/((a+b+c)^(2)) is equal to

If a and b are non-zero rational numbers and n is a natural number then (a^(n))/(b^(n))=((a)/(b))^(n)

If a+b=1 , then a^(4)+b^(4)-a^(3)-b^(3)-2a^(2)b^(2)+ab is equal to :

a,b are non-zero real numbers such that (a+bi)^(3)=(a-bi)^(3) The value of (b^(2))/(a^(2)) is

If a,b,&c are nonzero real numbers,then det[[b^(2)c^(2),bc,b+cc^(2)a^(2),ca,c+aa^(2)b^(2),ab,a+b]] is equal to

Fifth law If ab are non-zero rational numbers and n is an integer then ((a)/(b))^(n)=(a^(n))/(b^(n))