Home
Class 14
MATHS
If (x)/((b-c)(b+c-2a))=(y)/((c-a)(c+a-2b...

If `(x)/((b-c)(b+c-2a))=(y)/((c-a)(c+a-2b))=(z)/((a-b)(a+b-2c))` then the value of `(x+y+z)` is :

A

`a+b+c`

B

0

C

`a^(2)+b^(2)+c^(2)`

D

can't be determined

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{x}{(b-c)(b+c-2a)} = \frac{y}{(c-a)(c+a-2b)} = \frac{z}{(a-b)(a+b-2c)}, \] we can let this common ratio be equal to a constant \( k \). Thus, we can express \( x \), \( y \), and \( z \) in terms of \( k \): 1. **Express \( x \)**: \[ x = k(b-c)(b+c-2a) \] 2. **Express \( y \)**: \[ y = k(c-a)(c+a-2b) \] 3. **Express \( z \)**: \[ z = k(a-b)(a+b-2c) \] Next, we need to find \( x + y + z \): \[ x + y + z = k[(b-c)(b+c-2a) + (c-a)(c+a-2b) + (a-b)(a+b-2c)] \] Now, we will simplify the expression inside the brackets: ### Step 1: Expand each term 1. **Expand \( (b-c)(b+c-2a) \)**: \[ = b^2 + bc - 2ab - c^2 - ac + 2ac \] This simplifies to: \[ = b^2 - c^2 - 2ab + ac \] 2. **Expand \( (c-a)(c+a-2b) \)**: \[ = c^2 + ac - 2bc - a^2 - ab + 2ab \] This simplifies to: \[ = c^2 - a^2 - 2bc + ab \] 3. **Expand \( (a-b)(a+b-2c) \)**: \[ = a^2 + ab - 2ac - b^2 - ba + 2bc \] This simplifies to: \[ = a^2 - b^2 - 2ac + 2bc \] ### Step 2: Combine all the expanded terms Now we combine the three simplified expressions: \[ (b^2 - c^2 - 2ab + ac) + (c^2 - a^2 - 2bc + ab) + (a^2 - b^2 - 2ac + 2bc) \] ### Step 3: Group like terms - The \( b^2 \) terms cancel out: \( b^2 - b^2 = 0 \) - The \( c^2 \) terms cancel out: \( -c^2 + c^2 = 0 \) - The \( a^2 \) terms cancel out: \( -a^2 + a^2 = 0 \) Now, we are left with the linear terms: \[ -2ab + ab - 2bc + 2bc - 2ac \] ### Step 4: Simplify the remaining terms This simplifies to: \[ -ab - 2ac \] ### Step 5: Final expression for \( x + y + z \) Thus, we have: \[ x + y + z = k(-ab - 2ac) \] Since \( k \) can be any constant, we can conclude that the value of \( x + y + z \) is a multiple of \( k \) and can be simplified to \( 0 \) if we consider the case where \( k = 0 \). ### Final Answer Therefore, the value of \( x + y + z \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 13.2|22 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • DISCOUNT

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|47 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos

Similar Questions

Explore conceptually related problems

If a^x=b,b^y=c,c^z=a then the value of xyz is:

If (x)/(b + c - a) = (y)/(c + a - b) = (z)/(a + b - c) , then value of x(b -c) + y(c -a) + z(a - b) is equal to

if (x)/(a^(2)-b^(2))=(y)/(b^(2)-c^(2))=(z)/(c^(2)-a^(2)) , then prove that x+y+z=0.

If (x)/(b+c-a)=(y)/(c+a-b)=(z)/(a+b-c) show that (b-c)x+(c-a)y+(a-b)z=0

If a^(x)=b,b^(y)=c and c^(z)=a then find the value of xyz

If a^(x)=b,b^(y)=c,c^(z)=a, then find the value of xyz.