Home
Class 14
MATHS
sqrt7y^(2)-6y-13sqrt7=0:...

`sqrt7y^(2)-6y-13sqrt7=0`:`

A

`sqrt7, 2sqrt7`

B

`3, (2)/(sqrt7)`

C

`(13)/(sqrt7), -sqrt7`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the quadratic equation \( \sqrt{7}y^2 - 6y - 13\sqrt{7} = 0 \), we will follow these steps: ### Step 1: Identify the coefficients The given equation is in the standard form of a quadratic equation \( ay^2 + by + c = 0 \). - Here, \( a = \sqrt{7} \) - \( b = -6 \) - \( c = -13\sqrt{7} \) ### Step 2: Calculate the sum and product of the roots For a quadratic equation \( ay^2 + by + c = 0 \): - The sum of the roots \( (r_1 + r_2) \) is given by \( -\frac{b}{a} \) - The product of the roots \( (r_1 \cdot r_2) \) is given by \( \frac{c}{a} \) Calculating these: - Sum of the roots: \[ r_1 + r_2 = -\frac{-6}{\sqrt{7}} = \frac{6}{\sqrt{7}} \] - Product of the roots: \[ r_1 \cdot r_2 = \frac{-13\sqrt{7}}{\sqrt{7}} = -13 \] ### Step 3: Set up the factorization We need to find two numbers that add up to \( \frac{6}{\sqrt{7}} \) and multiply to \( -13 \). Let’s denote these numbers as \( p \) and \( q \): - \( p + q = \frac{6}{\sqrt{7}} \) - \( p \cdot q = -13 \) ### Step 4: Solve for \( p \) and \( q \) To find \( p \) and \( q \), we can set up the equations: 1. \( p + q = \frac{6}{\sqrt{7}} \) 2. \( p \cdot q = -13 \) Let’s assume \( p = a \) and \( q = b \): - From \( a + b = \frac{6}{\sqrt{7}} \) - From \( ab = -13 \) We can solve this system by substituting \( b = \frac{6}{\sqrt{7}} - a \) into the second equation: \[ a\left(\frac{6}{\sqrt{7}} - a\right) = -13 \] Expanding this gives: \[ \frac{6a}{\sqrt{7}} - a^2 + 13 = 0 \] Rearranging: \[ a^2 - \frac{6a}{\sqrt{7}} - 13 = 0 \] ### Step 5: Use the quadratic formula Now we can apply the quadratic formula \( a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): - Here \( A = 1 \), \( B = -\frac{6}{\sqrt{7}} \), \( C = -13 \) Calculating the discriminant: \[ D = \left(-\frac{6}{\sqrt{7}}\right)^2 - 4 \cdot 1 \cdot (-13) \] \[ D = \frac{36}{7} + 52 = \frac{36 + 364}{7} = \frac{400}{7} \] Now substituting into the quadratic formula: \[ a = \frac{\frac{6}{\sqrt{7}} \pm \sqrt{\frac{400}{7}}}{2} \] \[ = \frac{\frac{6}{\sqrt{7}} \pm \frac{20}{\sqrt{7}}}{2} \] \[ = \frac{(6 \pm 20)}{2\sqrt{7}} \] ### Step 6: Find the roots Calculating the two roots: 1. \( a_1 = \frac{26}{2\sqrt{7}} = \frac{13}{\sqrt{7}} \) 2. \( a_2 = \frac{-14}{2\sqrt{7}} = -\frac{7}{\sqrt{7}} = -\sqrt{7} \) Thus, the roots of the equation are: \[ y_1 = \frac{13}{\sqrt{7}} \quad \text{and} \quad y_2 = -\sqrt{7} \] ### Final Answer The solutions to the equation \( \sqrt{7}y^2 - 6y - 13\sqrt{7} = 0 \) are: \[ y = \frac{13}{\sqrt{7}}, \quad y = -\sqrt{7} \] ---
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|57 Videos
  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|20 Videos
  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|20 Videos
  • SQUARE ROOT AND CUBE ROOT

    ARIHANT SSC|Exercise EXERCISE (C ) HIGHER SKILL LEVEL QUESTIONS|14 Videos
  • TIME AND WORK

    ARIHANT SSC|Exercise Final Round|15 Videos

Similar Questions

Explore conceptually related problems

Solve each of the following quadratic equations: sqrt(7)x^(2)-6x-13sqrt(7)=0

sqrt7/(sqrt(16+6 sqrt7)-sqrt(16-6 sqrt7)) = ?

sqrt(x)+y=11,x+sqrt(y)=7

{:(sqrt(5)x - sqrt(7)y = 0),(sqrt(7)x - sqrt(3)y = 0):}

1/(sqrt7+sqrt6-sqrt13)=

[(6sqrt (7)) ^ (2) + (6sqrt (7)) ^ (-2)] [(6sqrt (7)) ^ (4) -1+ (6sqrt (7)) ^ (-4)]

Rationailise the denominatios (1)/(sqrt(7)+sqrt(2))-(sqrt(7)+sqrt(2))/(sqrt(7)-sqrt(2))

30. Simplify 7sqrt(6)-sqrt(252)-sqrt(294)+6sqrt(7)

sqrt(x)+y=7,x+sqrt(y)=11