Home
Class 14
MATHS
(x+2)(x-5)(x-6)(x+1)=144:...

`(x+2)(x-5)(x-6)(x+1)=144`:

A

`-1, -2, -3`

B

`7, -3, 2`

C

`2, -3, 5`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((x+2)(x-5)(x-6)(x+1) = 144\), we will follow these steps: ### Step 1: Expand the Left Side First, we will expand the left-hand side of the equation. We can group the factors for easier multiplication: \[ (x+2)(x+1) \quad \text{and} \quad (x-5)(x-6) \] Calculating the first group: \[ (x+2)(x+1) = x^2 + 3x + 2 \] Calculating the second group: \[ (x-5)(x-6) = x^2 - 11x + 30 \] Now we multiply these two results together: \[ (x^2 + 3x + 2)(x^2 - 11x + 30) \] ### Step 2: Multiply the Two Quadratics Now we will expand this product: \[ = x^4 - 11x^3 + 30x^2 + 3x^3 - 33x^2 + 90x + 2x^2 - 22x + 60 \] Combining like terms: \[ = x^4 - 8x^3 + (30 - 33 + 2)x^2 + (90 - 22)x + 60 \] \[ = x^4 - 8x^3 - x^2 + 68x + 60 \] ### Step 3: Set the Equation to Zero Now we set the equation equal to zero by moving 144 to the left side: \[ x^4 - 8x^3 - x^2 + 68x + 60 - 144 = 0 \] \[ x^4 - 8x^3 - x^2 + 68x - 84 = 0 \] ### Step 4: Use Trial and Error to Find Roots We will now use trial and error to find rational roots. We will test the options provided: -1, -2, -3, 7, -3, and 2. **Testing x = -1:** \[ (-1 + 2)(-1 - 5)(-1 - 6)(-1 + 1) = 1 \cdot (-6) \cdot (-7) \cdot 0 = 0 \quad \text{(not equal to 144)} \] **Testing x = -2:** \[ (-2 + 2)(-2 - 5)(-2 - 6)(-2 + 1) = 0 \quad \text{(not equal to 144)} \] **Testing x = -3:** \[ (-3 + 2)(-3 - 5)(-3 - 6)(-3 + 1) = (-1)(-8)(-9)(-2) = -144 \quad \text{(not equal to 144)} \] **Testing x = 7:** \[ (7 + 2)(7 - 5)(7 - 6)(7 + 1) = 9 \cdot 2 \cdot 1 \cdot 8 = 144 \quad \text{(equal to 144)} \] ### Step 5: Confirm Other Options **Testing x = -3 again:** \[ (-3 + 2)(-3 - 5)(-3 - 6)(-3 + 1) = (-1)(-8)(-9)(-2) = -144 \quad \text{(not equal to 144)} \] **Testing x = 2:** \[ (2 + 2)(2 - 5)(2 - 6)(2 + 1) = 4 \cdot (-3) \cdot (-4) \cdot 3 = 144 \quad \text{(equal to 144)} \] ### Conclusion The values of \(x\) that satisfy the equation are \(7\) and \(2\). Therefore, the correct option is: **Answer: 7, -3, 2**
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|57 Videos
  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|20 Videos
  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|20 Videos
  • SQUARE ROOT AND CUBE ROOT

    ARIHANT SSC|Exercise EXERCISE (C ) HIGHER SKILL LEVEL QUESTIONS|14 Videos
  • TIME AND WORK

    ARIHANT SSC|Exercise Final Round|15 Videos

Similar Questions

Explore conceptually related problems

(x-1)/(x-2)-(x-2)/(x-3)=(x-5)/(x-6)-(x-6)/(x-7)

(x+6)/(x)=(x+5)/(x+2)

(x^(2)-(x+1)(x+2))/(5x+1)=6

if (x+5)/(x-6) = (x-1)/(x+2) , then value of x is

6(3x+2)-5(6x-1)=3(x-8)-5(7x-6)+9x

Expand using binomial theorem: (i) (1-2x)^(4) " " (ii) (x+2y)^(5) (iii) (x-(1)/(x))^(6) " "(iv) ((2x)/(3)=(3)/(2x))^(5) (v) (x^(2) +(2)/(x))^(6)" "(vi) (1+(1)/(x^(2)))^(4)

(x^(2)+1)/(x^(2)-5x+6)

int(x+1)/(x^2+5x+6)dx=

(x-1)/(3)+(2x+5)/(6)=(3x-6)/(9)-(2x-5)/(2)