Home
Class 14
MATHS
sqrt(x^(2)-9x+20)-sqrt(x^(2)-12x+32)=sqr...

`sqrt(x^(2)-9x+20)-sqrt(x^(2)-12x+32)=sqrt(2x^(2)-25x+68)`:

A

4, 9

B

3, 9

C

2, 4

D

2, 6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sqrt{x^2 - 9x + 20} - \sqrt{x^2 - 12x + 32} = \sqrt{2x^2 - 25x + 68} \] we will follow these steps: ### Step 1: Simplify the expressions under the square roots. 1. **First expression:** \[ x^2 - 9x + 20 = (x - 4)(x - 5) \] 2. **Second expression:** \[ x^2 - 12x + 32 = (x - 4)(x - 8) \] 3. **Third expression:** \[ 2x^2 - 25x + 68 = 2(x^2 - \frac{25}{2}x + 34) \]
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|57 Videos
  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|20 Videos
  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|20 Videos
  • SQUARE ROOT AND CUBE ROOT

    ARIHANT SSC|Exercise EXERCISE (C ) HIGHER SKILL LEVEL QUESTIONS|14 Videos
  • TIME AND WORK

    ARIHANT SSC|Exercise Final Round|15 Videos

Similar Questions

Explore conceptually related problems

sqrt(9-x^2)/x

THe value of x which satisfy the equation (sqrt(5x^(2)-8x+3))-sqrt((5x^(2)-9x+4))=sqrt((2x^(2)-2x))-sqrt((2x^(2)-3x+1))

The number of real solutions of sqrt(x^(2)-4x+3)+sqrt(x^(2)-9)=sqrt(4x^(2)-14x+6)

sqrt(x^(2)+x+4)+sqrt(x^(2)+x+1)=sqrt(2x^(2)+2x+4)

sqrt(2)x^(2)+9x+4sqrt(2)

int(dx)/(sqrt(x^(2)-9)+sqrt(x^(2)-4))=

"int(x^(2))/(sqrt(9-25x^(2)))dx

(sqrt(x))^(2)-sqrt(x)-12=0

lim_(x rarr2)((sqrt(x^(2)-4x+5)-1)((x+2)^(9/2)-512))/((x-2)(sqrt(x^(2)-4x+20)-4))

ARIHANT SSC-THEORY OF EQUATIONS-INTRODUCTORY EXERCISE - 14.1
  1. sqrt(x/(1-x))+sqrt((1-x)/x)=13/6

    Text Solution

    |

  2. sqrt(2x^(2)-2x+1)-2x+3=0:

    Text Solution

    |

  3. sqrt(x^(2)-9x+20)-sqrt(x^(2)-12x+32)=sqrt(2x^(2)-25x+68):

    Text Solution

    |

  4. (x-(1)/(x))^(2)+8(x+(1)/(x))=29, x ne0:

    Text Solution

    |

  5. ((1)/(x+1)+(1)/(x+5))=((1)/(x+2)+(1)/(x+4)):

    Text Solution

    |

  6. Determine k such that the quadratic equation x^(2)+7(3+2k)-2x(1+3k)=0 ...

    Text Solution

    |

  7. Discriminant of the equation -3x^(2)+2x-8=0 is :

    Text Solution

    |

  8. The nature of the roots of the equation x^(2)-5x+7=0 is

    Text Solution

    |

  9. The roots of a^(2)x^(2)+abx+b^(2),ane0 are :

    Text Solution

    |

  10. The equal x^(2)-px+q=0, p,q, in R has no real roots if :

    Text Solution

    |

  11. Determine the value of k for which the quadratic equation 4x^(2)-3kx+1...

    Text Solution

    |

  12. Find the value of k such that the equation x^(2)-(k+6)x+2(2k-1)=0 has ...

    Text Solution

    |

  13. Find the value of k so that the sum of the roots of the quadratic equa...

    Text Solution

    |

  14. If -4 is a root of the quadratic equation x^(2)-px-4=0 and the quadrat...

    Text Solution

    |

  15. Find the value of k such that the sum of the squares of the roots of t...

    Text Solution

    |

  16. Find the value of p for which the quadratic equation x^(2)+p(4x+p-1)+2...

    Text Solution

    |

  17. If alpha and beta are the roots of the equation 3x^(2)+7x+3=0 Find the...

    Text Solution

    |

  18. If alpha and beta are the roots of the equation x^(2)-3x+2=0, Find the...

    Text Solution

    |

  19. Find the quadratic equation whose roots are sqrt3 and 2sqrt3 :

    Text Solution

    |

  20. If alpha and beta are the roots of equation 6x^(2)+x-2=0, find the val...

    Text Solution

    |