Home
Class 14
MATHS
(x-(1)/(x))^(2)+8(x+(1)/(x))=29, x ne0:...

`(x-(1)/(x))^(2)+8(x+(1)/(x))=29, x ne0`:

A

`-5, 4`

B

`3, 2`

C

`1, 3`

D

`(3+sqrt5)/(2),(-11pm 3sqrt(13))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((x - \frac{1}{x})^2 + 8(x + \frac{1}{x}) = 29\), we will follow these steps: ### Step 1: Expand the equation We start by expanding \((x - \frac{1}{x})^2\): \[ (x - \frac{1}{x})^2 = x^2 - 2 + \frac{1}{x^2} \] Thus, the equation becomes: \[ x^2 - 2 + \frac{1}{x^2} + 8(x + \frac{1}{x}) = 29 \] ### Step 2: Substitute \(y = x + \frac{1}{x}\) Let \(y = x + \frac{1}{x}\). Then we can express \(\frac{1}{x^2}\) in terms of \(y\): \[ \frac{1}{x^2} = y^2 - 2 \] Now substituting \(y\) into the equation gives: \[ (x^2 + \frac{1}{x^2}) = (y^2 - 2) \Rightarrow (y^2 - 2) - 2 + 8y = 29 \] This simplifies to: \[ y^2 + 8y - 33 = 0 \] ### Step 3: Solve the quadratic equation Now we will solve the quadratic equation \(y^2 + 8y - 33 = 0\) using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \(a = 1\), \(b = 8\), and \(c = -33\): \[ y = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 1 \cdot (-33)}}{2 \cdot 1} \] Calculating the discriminant: \[ y = \frac{-8 \pm \sqrt{64 + 132}}{2} = \frac{-8 \pm \sqrt{196}}{2} = \frac{-8 \pm 14}{2} \] ### Step 4: Find the values of \(y\) Calculating the two possible values for \(y\): 1. \(y = \frac{6}{2} = 3\) 2. \(y = \frac{-22}{2} = -11\) ### Step 5: Solve for \(x\) Now we will find \(x\) for both values of \(y\). **For \(y = 3\)**: \[ x + \frac{1}{x} = 3 \Rightarrow x^2 - 3x + 1 = 0 \] Using the quadratic formula: \[ x = \frac{3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{3 \pm \sqrt{5}}{2} \] **For \(y = -11\)**: \[ x + \frac{1}{x} = -11 \Rightarrow x^2 + 11x + 1 = 0 \] Using the quadratic formula: \[ x = \frac{-11 \pm \sqrt{11^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{-11 \pm \sqrt{117}}{2} = \frac{-11 \pm 3\sqrt{13}}{2} \] ### Final Results Thus, the solutions for \(x\) are: 1. \(x = \frac{3 + \sqrt{5}}{2}\) 2. \(x = \frac{3 - \sqrt{5}}{2}\) 3. \(x = \frac{-11 + 3\sqrt{13}}{2}\) 4. \(x = \frac{-11 - 3\sqrt{13}}{2}\)
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|57 Videos
  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|20 Videos
  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|20 Videos
  • SQUARE ROOT AND CUBE ROOT

    ARIHANT SSC|Exercise EXERCISE (C ) HIGHER SKILL LEVEL QUESTIONS|14 Videos
  • TIME AND WORK

    ARIHANT SSC|Exercise Final Round|15 Videos

Similar Questions

Explore conceptually related problems

4(x-(1)/(x))^(2)+8(x+(1)/(x))=29 is

Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0) then f(x) equals

If f(x)={(e^((1)/(x))/(1+e^((1)/(x)))",", x ne0),(0",",x=0):} , then

Let f (x) = {{:(e ^((1)/(x ^(2)))sin ""(1)/(x), x ne0),(lamda, x =(pi)/(4)):}, then f '(0)=

The function f (x)={((x ^(2n)))/((x ^(2n) sgn x)^(2n+1))((e ^(1/x)-e ^(-1/x))/(e ^(1/x)+e ^(-(1)/(x))))x ne0 n in N is:

Solve for x: (1)/(x-2)+(2)/(x-1)=(6)/(x) ,x ne 0,1,2

(x^(2) +1)/x, x ne 0

ARIHANT SSC-THEORY OF EQUATIONS-INTRODUCTORY EXERCISE - 14.1
  1. sqrt(2x^(2)-2x+1)-2x+3=0:

    Text Solution

    |

  2. sqrt(x^(2)-9x+20)-sqrt(x^(2)-12x+32)=sqrt(2x^(2)-25x+68):

    Text Solution

    |

  3. (x-(1)/(x))^(2)+8(x+(1)/(x))=29, x ne0:

    Text Solution

    |

  4. ((1)/(x+1)+(1)/(x+5))=((1)/(x+2)+(1)/(x+4)):

    Text Solution

    |

  5. Determine k such that the quadratic equation x^(2)+7(3+2k)-2x(1+3k)=0 ...

    Text Solution

    |

  6. Discriminant of the equation -3x^(2)+2x-8=0 is :

    Text Solution

    |

  7. The nature of the roots of the equation x^(2)-5x+7=0 is

    Text Solution

    |

  8. The roots of a^(2)x^(2)+abx+b^(2),ane0 are :

    Text Solution

    |

  9. The equal x^(2)-px+q=0, p,q, in R has no real roots if :

    Text Solution

    |

  10. Determine the value of k for which the quadratic equation 4x^(2)-3kx+1...

    Text Solution

    |

  11. Find the value of k such that the equation x^(2)-(k+6)x+2(2k-1)=0 has ...

    Text Solution

    |

  12. Find the value of k so that the sum of the roots of the quadratic equa...

    Text Solution

    |

  13. If -4 is a root of the quadratic equation x^(2)-px-4=0 and the quadrat...

    Text Solution

    |

  14. Find the value of k such that the sum of the squares of the roots of t...

    Text Solution

    |

  15. Find the value of p for which the quadratic equation x^(2)+p(4x+p-1)+2...

    Text Solution

    |

  16. If alpha and beta are the roots of the equation 3x^(2)+7x+3=0 Find the...

    Text Solution

    |

  17. If alpha and beta are the roots of the equation x^(2)-3x+2=0, Find the...

    Text Solution

    |

  18. Find the quadratic equation whose roots are sqrt3 and 2sqrt3 :

    Text Solution

    |

  19. If alpha and beta are the roots of equation 6x^(2)+x-2=0, find the val...

    Text Solution

    |

  20. If a and c are such that the quadratic equation ax^(2)-5x+c=0 has 10 a...

    Text Solution

    |