Home
Class 14
MATHS
If alpha, beta be the roots of the quadr...

If `alpha, beta` be the roots of the quadratic equation `3x^(2)-6x+4=0`, find the value of
`((alpha)/(beta)+(beta)/(alpha))+2((1)/(alpha)+(1)/(beta))+3alpha beta`:

A

6

B

8

C

7

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \frac{\alpha}{\beta} + \frac{\beta}{\alpha} + 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) + 3\alpha\beta \] where \(\alpha\) and \(\beta\) are the roots of the quadratic equation \(3x^2 - 6x + 4 = 0\). ### Step 1: Find the roots of the quadratic equation The roots of the quadratic equation \(ax^2 + bx + c = 0\) can be found using the formulas: \[ \alpha + \beta = -\frac{b}{a} \quad \text{and} \quad \alpha \beta = \frac{c}{a} \] For the given equation \(3x^2 - 6x + 4 = 0\): - \(a = 3\) - \(b = -6\) - \(c = 4\) Calculating the sum and product of the roots: \[ \alpha + \beta = -\frac{-6}{3} = \frac{6}{3} = 2 \] \[ \alpha \beta = \frac{4}{3} \] ### Step 2: Calculate \(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\) Using the identity: \[ \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} \] We can find \(\alpha^2 + \beta^2\) using: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \] Substituting the values we found: \[ \alpha^2 + \beta^2 = (2)^2 - 2 \cdot \frac{4}{3} = 4 - \frac{8}{3} = \frac{12}{3} - \frac{8}{3} = \frac{4}{3} \] Now substituting back: \[ \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\frac{4}{3}}{\frac{4}{3}} = 1 \] ### Step 3: Calculate \(2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right)\) Using the identity: \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} \] Substituting the values: \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{2}{\frac{4}{3}} = 2 \cdot \frac{3}{4} = \frac{3}{2} \] Thus: \[ 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) = 2 \cdot \frac{3}{2} = 3 \] ### Step 4: Calculate \(3\alpha\beta\) We already found \(\alpha \beta = \frac{4}{3}\): \[ 3\alpha\beta = 3 \cdot \frac{4}{3} = 4 \] ### Step 5: Combine all parts Now we can combine all the parts we calculated: \[ \frac{\alpha}{\beta} + \frac{\beta}{\alpha} + 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) + 3\alpha\beta = 1 + 3 + 4 = 8 \] ### Final Answer The value of the expression is: \[ \boxed{8} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|57 Videos
  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|20 Videos
  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|20 Videos
  • SQUARE ROOT AND CUBE ROOT

    ARIHANT SSC|Exercise EXERCISE (C ) HIGHER SKILL LEVEL QUESTIONS|14 Videos
  • TIME AND WORK

    ARIHANT SSC|Exercise Final Round|15 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the zeros of the quadratic polynomial p(s)=3s^(2)-6s+4, find the value of (alpha)/(beta)+(beta)/(alpha)+2((1)/(alpha)+(1)/(beta))+3 alpha beta

If alpha and beta are zeroes of the quadratic polynomial p(x)=6x^(2)+x-1, then find the value of (alpha)/(beta)+(beta)/(alpha)+2((1)/(alpha)+(1)/(beta))+3 alpha beta

Knowledge Check

  • If alpha,beta are the roots of the quadratic equation 3x^2-6x+4=0 find the value of (alpha/beta+beta/alpha)+2(1/alpha+1/beta)+3alphabeta

    A
    6
    B
    8
    C
    7
    D
    5
  • If alpha and beta are the roots of the equation x^(2)-x-4=0 , find the value of (1)/(alpha)+(1)/(beta)-alpha beta :

    A
    `(16)/(7)`
    B
    `(8)/(5)`
    C
    `(15)/(4)`
    D
    none of these
  • If alpha, beta are the roots of the equation 8x^(2)-3x+27=0 , then the value of ((alpha^(2))/(beta)) +((beta^(2))/(alpha))^(1//3) is

    A
    `1//4`
    B
    `1//3`
    C
    `7//2`
    D
    4
  • Similar Questions

    Explore conceptually related problems

    If alpha and beta are the roots of the quadratic equation x^(2)-6x+1=0, then the value of (alpha^(2))/(beta^(2))+(beta^(2))/(alpha^(2)) is

    If alpha,beta be the roots of the equation 3x^(2)-6x+4=0, then find the value of ((alpha^(2))/(beta)+(beta^(2))/(alpha))+((alpha)/(beta)+(beta)/(alpha))+2((1)/(alpha)+(1)/(beta))+3 alpha beta

    If alpha and beta be the roots of the equation x^(2)+3x+1=0 then the value of ((alpha)/(1+beta))^(2)+((beta)/(alpha+1))^(2)

    If alpha and beta are the roots of the quadratic equation x^(2)-3x-2=0, then (alpha)/(beta)+(beta)/(alpha)=

    If alpha and beta are the roots of the quadratic equation 4x^(2) + 3x + 7 = 0 then the value of 1/alpha + 1/beta is