Home
Class 14
MATHS
If alpha, beta, gamma are such that alph...

If `alpha, beta, gamma` are such that `alpha +beta+gamma=2, alpha^(2)+beta^(2)+gamma^(2)=6, alpha^(3)+beta^(3)+gamma^(3)=8`, then `alpha^(4)+beta^(4)+gamma^(4)` is equal to:

A

10

B

12

C

18

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \alpha^4 + \beta^4 + \gamma^4 \) given the equations: 1. \( \alpha + \beta + \gamma = 2 \) 2. \( \alpha^2 + \beta^2 + \gamma^2 = 6 \) 3. \( \alpha^3 + \beta^3 + \gamma^3 = 8 \) we can use the relationships between the symmetric sums of the roots. ### Step 1: Use the identity for the square of the sum of the roots We know that: \[ \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) \] Substituting the known values: \[ 6 = 2^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) \] This simplifies to: \[ 6 = 4 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) \] Rearranging gives: \[ 2(\alpha\beta + \beta\gamma + \gamma\alpha) = 4 - 6 = -2 \] Thus: \[ \alpha\beta + \beta\gamma + \gamma\alpha = -1 \] ### Step 2: Use the identity for the sum of cubes Next, we use the identity for the sum of cubes: \[ \alpha^3 + \beta^3 + \gamma^3 = (\alpha + \beta + \gamma)(\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta - \beta\gamma - \gamma\alpha) + 3\alpha\beta\gamma \] Substituting the known values: \[ 8 = 2(6 - (-1)) + 3\alpha\beta\gamma \] This simplifies to: \[ 8 = 2(6 + 1) + 3\alpha\beta\gamma \] \[ 8 = 2 \times 7 + 3\alpha\beta\gamma \] \[ 8 = 14 + 3\alpha\beta\gamma \] Rearranging gives: \[ 3\alpha\beta\gamma = 8 - 14 = -6 \] Thus: \[ \alpha\beta\gamma = -2 \] ### Step 3: Use the identity for the fourth power Now we can find \( \alpha^4 + \beta^4 + \gamma^4 \) using the identity: \[ \alpha^4 + \beta^4 + \gamma^4 = (\alpha^2 + \beta^2 + \gamma^2)^2 - 2(\alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2) \] First, we compute \( (\alpha^2 + \beta^2 + \gamma^2)^2 \): \[ (\alpha^2 + \beta^2 + \gamma^2)^2 = 6^2 = 36 \] Next, we need to find \( \alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2 \): Using the identity: \[ \alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2 = (\alpha\beta + \beta\gamma + \gamma\alpha)^2 - 2\alpha\beta\gamma(\alpha + \beta + \gamma) \] Substituting the known values: \[ \alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2 = (-1)^2 - 2(-2)(2) \] \[ = 1 + 8 = 9 \] ### Step 4: Substitute back to find \( \alpha^4 + \beta^4 + \gamma^4 \) Now we can substitute back: \[ \alpha^4 + \beta^4 + \gamma^4 = 36 - 2 \times 9 = 36 - 18 = 18 \] Thus, the final answer is: \[ \alpha^4 + \beta^4 + \gamma^4 = 18 \]
Promotional Banner

Topper's Solved these Questions

  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise EXERCISE(LEVEL 2)|20 Videos
  • THEORY OF EQUATIONS

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 14.1|40 Videos
  • SQUARE ROOT AND CUBE ROOT

    ARIHANT SSC|Exercise EXERCISE (C ) HIGHER SKILL LEVEL QUESTIONS|14 Videos
  • TIME AND WORK

    ARIHANT SSC|Exercise Final Round|15 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are such that alpha+beta+gamma=2alpha^(2)+beta^(2)+gamma^(2)=6,alpha^(3)+beta^(3)+gamma^(3)=8, then alpha^(4)+beta^(4)+gamma^(4)

If alpha+beta+gamma=6,alpha^(2)+beta^(2)+gamma^(2)=14 and alpha^(3)+beta^(3)+gamma^(3)=36, then alpha^(4)+beta^(4)+gamma^(4)=

If alpha,beta,gamma are such that alpha+beta+gamma=2,alpha^(2)+beta^(2)+gamma^(2)=6,alpha^(3)+beta^(3)+gamma^(3)=8, then alpha^(4)+beta^(4)+ is a.18b.10c*15d.36

If A=[alpha beta gamma-alpha] is such that A^(2)=I, then 1+alpha^(2)+beta gamma=0( b) 1-alpha^(2)+beta gamma=0 (c) 1-alpha^(2)-beta gamma=0 (d) 1+alpha^(2)-beta gamma=0

If alpha, beta, gamma are the cube roots of 8 , then |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)|=

If cos alpha+cos beta+cos gamma=0=sin alpha+sin beta+sin gamma , then (sin3alpha+sin3beta+sin3gamma)/(sin(alpha+beta+gamma)) is equal to

Prove that: | alpha beta gamma alpha^(2)beta^(2)gamma^(2)beta+gamma gamma+alpha alpha+beta|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+beta+gamma)

Q.show that det [[- alpha (2), alpha beta, gamma alphaalpha beta, -beta ^ (2), beta gammagamma alpha, beta gamma, -gamma ^ (2)]] = 4 alpha ^ (2) beta ^ (2) gamma ^ (2)

sin (beta+ gamma- alpha) + sin (gamma+ alpha - beta) + sin (alpha + beta- gamma)- sin (alpha + beta + gamma)=

ARIHANT SSC-THEORY OF EQUATIONS-EXERCISE(LEVEL 1)
  1. If alpha, beta, gamma, are the roots of the equation x^(3)+3x-1=0, the...

    Text Solution

    |

  2. If x^(2)-ax-21=0 and x^(2)-3ax+35=0, a gt 0 have a common root, then a...

    Text Solution

    |

  3. If alpha, beta, gamma are such that alpha +beta+gamma=2, alpha^(2)+bet...

    Text Solution

    |

  4. The real values of a for which the quadratic equation 2x^2-(a^(3)+8a-1...

    Text Solution

    |

  5. If alpha, beta are the roots of ax^(2)+bx+c=0 and alpha+k, beta+k are ...

    Text Solution

    |

  6. If alpha, beta in R, are the roots of the equation ax^(2)+bx+c=0, k in...

    Text Solution

    |

  7. If the equation x^(2) + 2 (1 + k ļx +k^(2)) = 0 has equal roots, then ...

    Text Solution

    |

  8. The least integral value of 'a' for which the equation x^2+2(a - 1)...

    Text Solution

    |

  9. The number of real soltuions of the equation 2^(3x^(2)-7x+4)=1 is :

    Text Solution

    |

  10. The number of real soltuions of the equation 2^(3x^(2)-7x+4)=1 is :

    Text Solution

    |

  11. Find the number of real roots of the equation (x-1)^2+(x-2)^2+(x-3)^2=...

    Text Solution

    |

  12. sqrt(x+1)-sqrt(x-1)=sqrt(4x-1)

    Text Solution

    |

  13. If alpha,beta are the roots of the equation 8x^2-3x+27=0, then the val...

    Text Solution

    |

  14. The value of a for which the quadratic equation 3x^(2) + 2a^(2) + 1x...

    Text Solution

    |

  15. The difference of maximum values of the expressions (6 + 5x - x^(2)) ...

    Text Solution

    |

  16. If sintheta and costheta are roots of equation ax^(2) + bx + c =0, the...

    Text Solution

    |

  17. The equation 3^(x-1)+5^(x-1)=34 has

    Text Solution

    |

  18. If x=(sqrt(3)+1)/(sqrt3-1)andy=(sqrt3-1)/(sqrt3+1),"then "x^(2)+y^(2) ...

    Text Solution

    |

  19. The values of the parameter a for which the quadratic equations (1 – 2...

    Text Solution

    |

  20. The integer k for which the inequality x^2 - 2 (4k -1) x+ 15 k^...

    Text Solution

    |