Home
Class 14
MATHS
Find the range of f(x)=(x^(2)-2)/(x^(2)-...

Find the range of `f(x)=(x^(2)-2)/(x^(2)-3` :

A

`(1, oo)`

B

`(-oo, 2//3)`

C

`(-oo, 2//3)`

D

`(-oo, 2//3]uu(1, oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \frac{x^2 - 2}{x^2 - 3} \), we will follow these steps: ### Step 1: Set the function equal to \( y \) We start by setting the function equal to \( y \): \[ y = \frac{x^2 - 2}{x^2 - 3} \] ### Step 2: Cross-multiply to eliminate the fraction To eliminate the fraction, we cross-multiply: \[ y(x^2 - 3) = x^2 - 2 \] This simplifies to: \[ yx^2 - 3y = x^2 - 2 \] ### Step 3: Rearrange the equation Rearranging the equation gives us: \[ yx^2 - x^2 = 3y - 2 \] Factoring out \( x^2 \) from the left side: \[ x^2(y - 1) = 3y - 2 \] ### Step 4: Solve for \( x^2 \) Now, we can express \( x^2 \) in terms of \( y \): \[ x^2 = \frac{3y - 2}{y - 1} \] ### Step 5: Analyze the conditions for \( x^2 \) Since \( x^2 \) must be non-negative (i.e., \( x^2 \geq 0 \)), we set the condition: \[ \frac{3y - 2}{y - 1} \geq 0 \] ### Step 6: Determine the critical points To find the values of \( y \) that satisfy this inequality, we identify the critical points by setting the numerator and denominator to zero: 1. **Numerator**: \( 3y - 2 = 0 \) gives \( y = \frac{2}{3} \) 2. **Denominator**: \( y - 1 = 0 \) gives \( y = 1 \) ### Step 7: Test intervals around the critical points We will test intervals determined by the critical points \( y = \frac{2}{3} \) and \( y = 1 \): - For \( y < \frac{2}{3} \): Choose \( y = 0 \) \[ \frac{3(0) - 2}{0 - 1} = \frac{-2}{-1} = 2 \quad (\text{positive}) \] - For \( \frac{2}{3} < y < 1 \): Choose \( y = 0.8 \) \[ \frac{3(0.8) - 2}{0.8 - 1} = \frac{2.4 - 2}{-0.2} = \frac{0.4}{-0.2} = -2 \quad (\text{negative}) \] - For \( y > 1 \): Choose \( y = 2 \) \[ \frac{3(2) - 2}{2 - 1} = \frac{6 - 2}{1} = 4 \quad (\text{positive}) \] ### Step 8: Conclusion on intervals From our tests, we find: - The function is non-negative for \( y < \frac{2}{3} \) and \( y > 1 \). - The function is undefined at \( y = 1 \). ### Step 9: Write the range Thus, the range of the function \( f(x) \) is: \[ (-\infty, \frac{2}{3}] \cup (1, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 17.2|30 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 17.3|17 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise TEST OF YOU - LEARNING - 2|40 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(x)=2x^(2)-1

Find the range of f(x)=x^(2)-x-3

Find the range of f(x)=(x^(2)+1)/(x^(2)+2)

Find the range of f(x)=x^(2)-2|x|+3

Find the range of f(x)=|x^(2)-3x+2|

Find the range of f(x)=sgn(x^(2)-2x+3)

Find the range of f(x)=(x^(2)+34x-71)/(x^(2)+2x-7)

Find the range of f(x)=(x^(2)+x+1)/(x^(2)+x-1)

find the range of f(x)=|x+2|-3

Find the range of f(x)=(x)/(1+x^(2))