Home
Class 14
MATHS
If f(x)=(x)/(sqrt(1-x^2)) and g(x)=(x)/(...

If `f(x)=(x)/(sqrt(1-x^2)) and g(x)=(x)/(sqrt(1+x^2))`, then (fog)(x) ​ =

A

a. x

B

b. 0

C

c. -1

D

d. 2

Text Solution

AI Generated Solution

The correct Answer is:
To find \( (f \circ g)(x) \), we need to evaluate \( f(g(x)) \). 1. **Identify the functions**: - \( f(x) = \frac{x}{\sqrt{1 - x^2}} \) - \( g(x) = \frac{x}{\sqrt{1 + x^2}} \) 2. **Substitute \( g(x) \) into \( f(x) \)**: - We need to find \( f(g(x)) \): \[ f(g(x)) = f\left(\frac{x}{\sqrt{1 + x^2}}\right) \] 3. **Replace \( x \) in \( f(x) \) with \( g(x) \)**: - Substitute \( g(x) \) into \( f(x) \): \[ f\left(\frac{x}{\sqrt{1 + x^2}}\right) = \frac{\frac{x}{\sqrt{1 + x^2}}}{\sqrt{1 - \left(\frac{x}{\sqrt{1 + x^2}}\right)^2}} \] 4. **Simplify the denominator**: - Calculate \( \left(\frac{x}{\sqrt{1 + x^2}}\right)^2 \): \[ \left(\frac{x}{\sqrt{1 + x^2}}\right)^2 = \frac{x^2}{1 + x^2} \] - Thus, \( 1 - \left(\frac{x}{\sqrt{1 + x^2}}\right)^2 \) becomes: \[ 1 - \frac{x^2}{1 + x^2} = \frac{1 + x^2 - x^2}{1 + x^2} = \frac{1}{1 + x^2} \] 5. **Substitute back into the expression**: - Now substitute this back into our expression for \( f(g(x)) \): \[ f(g(x)) = \frac{\frac{x}{\sqrt{1 + x^2}}}{\sqrt{\frac{1}{1 + x^2}}} \] 6. **Simplify further**: - The square root in the denominator simplifies: \[ \sqrt{\frac{1}{1 + x^2}} = \frac{1}{\sqrt{1 + x^2}} \] - Thus, we have: \[ f(g(x)) = \frac{\frac{x}{\sqrt{1 + x^2}}}{\frac{1}{\sqrt{1 + x^2}}} = x \] 7. **Final result**: - Therefore, \( (f \circ g)(x) = x \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 17.2|30 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 17.3|17 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise TEST OF YOU - LEARNING - 2|40 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(x)/(sqrt(1-x^(2))),g(x)=(x)/(sqrt(1+x^(2))) then ( fog )(x)=

Given f(x)=log((1+x)/(1-x)) and g(x) = (3x+x^(3))/(1+3x^(2)) , then fog(x) is

If f(x)=sqrt(2-x) and g(x)=sqrt(1-2x) ,then the domain of f[g(x)] is:

Let f(x)=1+sqrt(x) and g(x)=(2x)/(x^(2)+1)

If f(x)=sqrt(x^(2)-2x+1), then f' (x) ?

If f(x) = sqrt(2-x) and g(x) = sqrt(1-2x) , then the domain of fog (x) is

Suppose f and g are two functions such that f,g:R rarr Rf(x)=ln(1+sqrt(1+x^(2))) and g(x)=ln(x+sqrt(1+x^(2))) then find the value of xe^(g(x))f((1)/(x))+g'(x) at x=1