Home
Class 14
MATHS
If f(x)=64x^(3)+(1)/(x^(3)) and alpha, b...

If `f(x)=64x^(3)+(1)/(x^(3))` and `alpha, beta` are the roots of `4x+(1)/(x)=2` then :

A

`f(alpha)=-24`

B

`f(alpha)=-16`

C

`f(beta)=-16`

D

both (b) and (c )

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f(\alpha) \) and \( f(\beta) \) given the function \( f(x) = 64x^3 + \frac{1}{x^3} \) and the roots \( \alpha \) and \( \beta \) of the equation \( 4x + \frac{1}{x} = 2 \). ### Step-by-Step Solution: 1. **Identify the equation and its roots**: The equation given is: \[ 4x + \frac{1}{x} = 2 \] Let's denote this as Equation (1). 2. **Rearranging Equation (1)**: We can rearrange Equation (1) to isolate the term involving \( x \): \[ 4x = 2 - \frac{1}{x} \] Multiplying through by \( x \) (assuming \( x \neq 0 \)): \[ 4x^2 = 2x - 1 \] Rearranging gives us: \[ 4x^2 - 2x + 1 = 0 \] 3. **Finding the roots of the quadratic**: We can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 4, b = -2, c = 1 \): \[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 4 \cdot 1}}{2 \cdot 4} \] \[ x = \frac{2 \pm \sqrt{4 - 16}}{8} \] \[ x = \frac{2 \pm \sqrt{-12}}{8} \] \[ x = \frac{2 \pm 2i\sqrt{3}}{8} = \frac{1 \pm i\sqrt{3}}{4} \] Thus, the roots \( \alpha \) and \( \beta \) are: \[ \alpha = \frac{1 + i\sqrt{3}}{4}, \quad \beta = \frac{1 - i\sqrt{3}}{4} \] 4. **Cubing both sides of Equation (1)**: We cube both sides of the original equation: \[ (4x + \frac{1}{x})^3 = 2^3 \] Expanding the left side using the binomial theorem: \[ 64x^3 + 3 \cdot 4x \cdot 4x \cdot \frac{1}{x} + 3 \cdot 4x \cdot \frac{1}{x^2} + \frac{1}{x^3} = 8 \] Simplifying gives: \[ 64x^3 + 12 + \frac{1}{x^3} = 8 \] 5. **Rearranging to find \( f(x) \)**: Now, we can express \( f(x) \): \[ 64x^3 + \frac{1}{x^3} = 8 - 12 = -4 \] Thus, we have: \[ f(x) = -4 \] 6. **Conclusion**: Since \( \alpha \) and \( \beta \) are roots of the equation, we have: \[ f(\alpha) = f(\beta) = -4 \] ### Final Answer: The values of \( f(\alpha) \) and \( f(\beta) \) are both equal to \( -4 \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 17.2|30 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 17.3|17 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise TEST OF YOU - LEARNING - 2|40 Videos

Similar Questions

Explore conceptually related problems

If f(x)=64x^(3)+(1)/(x^(3)) and alpha,beta are the roots of 4x+(1)/(x)=3. Then

If f (x) = 27x^(3) -(1)/(x^(3)) and alpha, beta are roots of 3x - (1)/(x) = 2 then

If f(x)=27x^(3)+(1)/(x^(3)) and alpha,beta are the roots of the equation 3x+(1)/(x)=2, then -f(alpha) is equal to

If alpha,beta are roots of x^(2)+3x+1=0 then

If f is a real valued function given by f(x)=27 x^3+1/(x^3)a n dalpha,beta are roots of 3x+1/x=2. Then, f(alpha)=f(beta)=-9 (b) f(alpha)=10 (c) f(beta)=-10 (d) none of these

If alpha,beta and 1 are the roots of x^(3)-2x^(2)-5x+6=0 then (alpha,beta)=

If alpha,beta are the roots of x^(2)+7x+3=0 ,then (alpha-1)^(2)+(beta-1)^(2)=

If alpha ,beta, gamma are the roots of 2x^(3)-2x-1=0 then (sum alpha beta)^(2)

If alpha and beta are the roots of x^2-4x+3 then find the 1/alpha +1/ beta

If alpha,beta,1 are roots of x^(3)-2x^(2)-5x+6=0(alpha>1) then 3 alpha+beta=