Home
Class 14
MATHS
If f(x)=(x)/(sqrt(1+x^(2)), then f(f(f(x...

If `f(x)=(x)/(sqrt(1+x^(2))`, then `f(f(f(x)))` is :

A

`(3x)/(sqrt(1+x^(2)))`

B

`(x)/(sqrt(1+3x^(2)))`

C

`(x^(2))/(sqrt(1+x^(2)))`

D

`(x)/(sqrt(3+3x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f(f(f(x))) \) where \( f(x) = \frac{x}{\sqrt{1 + x^2}} \). ### Step 1: Calculate \( f(f(x)) \) 1. First, we need to find \( f(x) \): \[ f(x) = \frac{x}{\sqrt{1 + x^2}} \] 2. Now, we will substitute \( f(x) \) into itself to find \( f(f(x)) \): \[ f(f(x)) = f\left(\frac{x}{\sqrt{1 + x^2}}\right) \] We replace \( x \) in \( f(x) \) with \( \frac{x}{\sqrt{1 + x^2}} \): \[ f(f(x)) = \frac{\frac{x}{\sqrt{1 + x^2}}}{\sqrt{1 + \left(\frac{x}{\sqrt{1 + x^2}}\right)^2}} \] 3. Simplifying the denominator: \[ \left(\frac{x}{\sqrt{1 + x^2}}\right)^2 = \frac{x^2}{1 + x^2} \] Thus, \[ 1 + \left(\frac{x}{\sqrt{1 + x^2}}\right)^2 = 1 + \frac{x^2}{1 + x^2} = \frac{1 + x^2 + x^2}{1 + x^2} = \frac{1 + 2x^2}{1 + x^2} \] 4. Now substituting back into \( f(f(x)) \): \[ f(f(x)) = \frac{\frac{x}{\sqrt{1 + x^2}}}{\sqrt{\frac{1 + 2x^2}{1 + x^2}}} = \frac{x}{\sqrt{1 + x^2}} \cdot \frac{\sqrt{1 + x^2}}{\sqrt{1 + 2x^2}} = \frac{x}{\sqrt{1 + 2x^2}} \] ### Step 2: Calculate \( f(f(f(x))) \) 1. Now we need to find \( f(f(f(x))) \): \[ f(f(f(x))) = f\left(\frac{x}{\sqrt{1 + 2x^2}}\right) \] Substitute \( x \) in \( f(x) \) with \( \frac{x}{\sqrt{1 + 2x^2}} \): \[ f(f(f(x))) = \frac{\frac{x}{\sqrt{1 + 2x^2}}}{\sqrt{1 + \left(\frac{x}{\sqrt{1 + 2x^2}}\right)^2}} \] 2. Simplifying the denominator: \[ \left(\frac{x}{\sqrt{1 + 2x^2}}\right)^2 = \frac{x^2}{1 + 2x^2} \] Thus, \[ 1 + \left(\frac{x}{\sqrt{1 + 2x^2}}\right)^2 = 1 + \frac{x^2}{1 + 2x^2} = \frac{1 + 2x^2 + x^2}{1 + 2x^2} = \frac{1 + 3x^2}{1 + 2x^2} \] 3. Now substituting back into \( f(f(f(x))) \): \[ f(f(f(x))) = \frac{\frac{x}{\sqrt{1 + 2x^2}}}{\sqrt{\frac{1 + 3x^2}{1 + 2x^2}}} = \frac{x}{\sqrt{1 + 2x^2}} \cdot \frac{\sqrt{1 + 2x^2}}{\sqrt{1 + 3x^2}} = \frac{x}{\sqrt{1 + 3x^2}} \] ### Final Answer Thus, the final result is: \[ f(f(f(x))) = \frac{x}{\sqrt{1 + 3x^2}} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 17.2|30 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 17.3|17 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise TEST OF YOU - LEARNING - 2|40 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sqrt(x^(2)-2x+1), then f' (x) ?

If f(x)=sqrt(x+2sqrt(x))," then "f'(1)=

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

If f(x)=x sqrt(ax-x^(2)) for a>0, then f(x) is

If f(x)=(sqrt(x)+(1)/(sqrt(x)))^(2)," then: "f'(2)=

If f(x)=(sin^(-1)x)/(sqrt(1-x^(2))),then(1-x^(2))f'(x)-xf(x)=

If f(x)=x(sqrt(x)-sqrt(x+1)) then f(x) is:

If f(x)=(x+1)/(x-1),x!=1 then (f(f(f(f(x)))))=f(x)