Home
Class 14
MATHS
If g(x)=x^(2) +x−1 and (gof)(x)=4x^(2)...

If g(x)=x^(2) +x−1 and (gof)(x)=4x^(2) −10x+5, then f(5/4 ​ ) is equal to:

A

a. 3/2

B

b. -1/2

C

c. -3/2

D

d. none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f\left(\frac{5}{4}\right) \) given the functions \( g(x) = x^2 + x - 1 \) and \( (g \circ f)(x) = 4x^2 - 10x + 5 \). ### Step-by-step Solution: 1. **Understand the Composition of Functions:** The expression \( (g \circ f)(x) \) means \( g(f(x)) \). This means we will substitute \( f(x) \) into the function \( g(x) \). 2. **Set Up the Equation:** We know that: \[ g(f(x)) = 4x^2 - 10x + 5 \] and we also know: \[ g(x) = x^2 + x - 1 \] Therefore, we can write: \[ g(f(x)) = f(x)^2 + f(x) - 1 \] 3. **Equate the Two Expressions:** Set the two expressions for \( g(f(x)) \) equal to each other: \[ f(x)^2 + f(x) - 1 = 4x^2 - 10x + 5 \] 4. **Rearrange the Equation:** Rearranging gives us: \[ f(x)^2 + f(x) - (4x^2 - 10x + 6) = 0 \] This simplifies to: \[ f(x)^2 + f(x) - 4x^2 + 10x - 6 = 0 \] 5. **Use the Quadratic Formula:** The above is a quadratic equation in terms of \( f(x) \): \[ a = 1, \quad b = 1, \quad c = - (4x^2 - 10x + 6) \] The quadratic formula is: \[ f(x) = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Substituting \( a, b, c \): \[ f(x) = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-(4x^2 - 10x + 6))}}{2 \cdot 1} \] This simplifies to: \[ f(x) = \frac{-1 \pm \sqrt{1 + 16x^2 - 40x + 24}}{2} \] \[ = \frac{-1 \pm \sqrt{16x^2 - 40x + 25}}{2} \] 6. **Simplify the Square Root:** The expression inside the square root can be factored: \[ 16x^2 - 40x + 25 = (4x - 5)^2 \] Thus, we have: \[ f(x) = \frac{-1 \pm (4x - 5)}{2} \] 7. **Find the Two Possible Solutions:** This gives us two potential solutions: \[ f(x) = \frac{4x - 5 - 1}{2} = \frac{4x - 6}{2} = 2x - 3 \] or \[ f(x) = \frac{-4x + 5 - 1}{2} = \frac{-4x + 4}{2} = -2x + 2 \] 8. **Evaluate \( f\left(\frac{5}{4}\right) \):** We will evaluate both functions at \( x = \frac{5}{4} \): - For \( f(x) = 2x - 3 \): \[ f\left(\frac{5}{4}\right) = 2 \cdot \frac{5}{4} - 3 = \frac{10}{4} - 3 = \frac{10}{4} - \frac{12}{4} = -\frac{2}{4} = -\frac{1}{2} \] - For \( f(x) = -2x + 2 \): \[ f\left(\frac{5}{4}\right) = -2 \cdot \frac{5}{4} + 2 = -\frac{10}{4} + \frac{8}{4} = -\frac{2}{4} = -\frac{1}{2} \] 9. **Conclusion:** In both cases, we find: \[ f\left(\frac{5}{4}\right) = -\frac{1}{2} \] ### Final Answer: \[ f\left(\frac{5}{4}\right) = -\frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 17.2|30 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 17.3|17 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise TEST OF YOU - LEARNING - 2|40 Videos

Similar Questions

Explore conceptually related problems

If g(x)=x^(2)+x+x-1 and g(f(x))=4x^(2)-10x+5 then find f((5)/(4))

If g (x) = x ^(2) -1 and gof (x) = x ^(2) + 4x + 3, then f ((1)/(2)) is equal (f(x) gt 0 AA x in R)

If g(x)=x^(2)+x-2 and (1)/(2)(gof)(x)=2x^(2)-5x+2, then f^(-1)(x) is equal

Suppose f,g, R to R . If g(x) defined by g(x) = x^(2) + x-2 and (g.f)(x) =4x^(2) - 10 x + 4 , then f(x) may be given by

Let g(x) = x^(2) + x -1 AA x in R and (gof)(x) = 4x^(2) + 10 x + 5 AA x in R , then f(7//2) = …………

If f(x)=x^(2)-1 and g(x)=(x+1)^(2) , then gof(x)

If f(x)=4x^(2) and g(x)=x^(1/2) then find gof and fog.