Home
Class 14
MATHS
Let f(x)=(x)/(x+3), then f(x+1)=?...

Let `f(x)=(x)/(x+3)`, then `f(x+1)=?`

A

`(3x+2)/(x+2)`

B

`(x+1)/(x+4)`

C

`(x+1)/(x+3)`

D

`(2x+3)/(x+3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f(x+1) \) for the function \( f(x) = \frac{x}{x+3} \), we will follow these steps: ### Step 1: Substitute \( x + 1 \) into the function We start with the function: \[ f(x) = \frac{x}{x + 3} \] To find \( f(x + 1) \), we replace \( x \) with \( x + 1 \): \[ f(x + 1) = \frac{x + 1}{(x + 1) + 3} \] ### Step 2: Simplify the denominator Now, simplify the denominator: \[ f(x + 1) = \frac{x + 1}{x + 1 + 3} = \frac{x + 1}{x + 4} \] ### Final Answer Thus, the final result is: \[ f(x + 1) = \frac{x + 1}{x + 4} \] ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 17.2|30 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 17.3|17 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise TEST OF YOU - LEARNING - 2|40 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(x)/(x+3) , then (1)/(f(x+1))-f((1)/(x+1))=?

Let f(x)=(x-1)/(x+1) then f(1) is equal to

Let f(x)=x-[x], then f'(x)=1 for

let f(x)=(9^(x))/(9^(x)+3)then f(x)+f(1-x)

Let f(x)=x+(1)/(x), Then f(x^(3)) equals

Let f(x)=(x)/(1+|x|),x in R, then f is

Let f(x)=(9^(x))/(9^(x)+3). Show f(x)+f(1-x)=1 and,hence,evaluate.f((1)/(1996))+f((2)/(1996))+f((3)/(1996))+...+f((1995)/(1996))