Home
Class 14
MATHS
Let f(x)=(x)/(x+3), then (1)/(f(x+1))-f(...

Let `f(x)=(x)/(x+3)`, then `(1)/(f(x+1))-f((1)/(x+1))=?`

A

`(3x^(2)+7x+4)/(3(x^(2)+5x+5))`

B

`(3(x^(2)+5x+5))/(3x^(2)+7x+4)`

C

`(-x(2x+3))/((x+3)^(2))`

D

`(-(x+3)^(2))/(x(2x+3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \frac{1}{f(x+1)} - f\left(\frac{1}{x+1}\right) \) where \( f(x) = \frac{x}{x+3} \), we will follow these steps: ### Step 1: Calculate \( f(x+1) \) We start by substituting \( x+1 \) into the function \( f(x) \): \[ f(x+1) = \frac{x+1}{(x+1)+3} = \frac{x+1}{x+4} \] ### Step 2: Calculate \( \frac{1}{f(x+1)} \) Now we find the reciprocal of \( f(x+1) \): \[ \frac{1}{f(x+1)} = \frac{1}{\frac{x+1}{x+4}} = \frac{x+4}{x+1} \] ### Step 3: Calculate \( f\left(\frac{1}{x+1}\right) \) Next, we substitute \( \frac{1}{x+1} \) into the function \( f(x) \): \[ f\left(\frac{1}{x+1}\right) = \frac{\frac{1}{x+1}}{\frac{1}{x+1}+3} = \frac{\frac{1}{x+1}}{\frac{1 + 3(x+1)}{x+1}} = \frac{1}{1 + 3(x+1)} = \frac{1}{3x + 4} \] ### Step 4: Substitute into the expression Now we substitute the results from Steps 2 and 3 into the original expression: \[ \frac{1}{f(x+1)} - f\left(\frac{1}{x+1}\right) = \frac{x+4}{x+1} - \frac{1}{3x + 4} \] ### Step 5: Find a common denominator The common denominator for the two fractions is \((x+1)(3x+4)\): \[ \frac{x+4}{x+1} = \frac{(x+4)(3x+4)}{(x+1)(3x+4)} \] \[ \frac{1}{3x + 4} = \frac{(x+1)}{(x+1)(3x+4)} \] ### Step 6: Combine the fractions Now we can combine the fractions: \[ \frac{(x+4)(3x+4) - (x+1)}{(x+1)(3x+4)} \] ### Step 7: Expand the numerator Expanding the numerator: \[ (x+4)(3x+4) = 3x^2 + 4x + 12x + 16 = 3x^2 + 16x + 16 \] So, the numerator becomes: \[ 3x^2 + 16x + 16 - (x + 1) = 3x^2 + 16x + 16 - x - 1 = 3x^2 + 15x + 15 \] ### Step 8: Final expression Thus, the final expression is: \[ \frac{3x^2 + 15x + 15}{(x+1)(3x+4)} \] ### Conclusion The final answer is: \[ \frac{3(x^2 + 5x + 5)}{(x+1)(3x+4)} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 17.2|30 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 17.3|17 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise TEST OF YOU - LEARNING - 2|40 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(x)/(x+3) , then f(x+1)=?

f(x)=(1-x)/(1+x) then f{f((1)/(x))}

If f(x)=(1-x)/(1+x) then f{f((1)/(x))}

Let f(x)=x+(1)/(x), Then f(x^(3)) equals

let f(x)=(9^(x))/(9^(x)+3)then f(x)+f(1-x)

Let f(x)=(x-1)/(x+1) then f(1) is equal to

If f(x)=(x+1)/(x-1),x!=1 then (f(f(f(f(x)))))=f(x)

f(x)=(2x+3)/(3x+2), then show that f(x)*f((1)/(x))=1. if f(x)=4, then show that f(x+1)-f(x)=f(x)