Home
Class 14
MATHS
If f(x)=(x+1)/(x-1), x ne 1, find f(f(f(...

If `f(x)=(x+1)/(x-1), x ne 1`, find `f(f(f(f(2)))))`

A

2

B

3

C

4

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \( f(f(f(f(2)))) \) for the function \( f(x) = \frac{x+1}{x-1} \), we will follow these steps: ### Step 1: Calculate \( f(2) \) Using the function definition: \[ f(2) = \frac{2 + 1}{2 - 1} = \frac{3}{1} = 3 \] ### Step 2: Calculate \( f(f(2)) = f(3) \) Now we need to find \( f(3) \): \[ f(3) = \frac{3 + 1}{3 - 1} = \frac{4}{2} = 2 \] ### Step 3: Calculate \( f(f(f(2))) = f(f(3)) = f(2) \) Next, we find \( f(f(3)) \), which we already calculated as \( f(2) \): \[ f(f(3)) = f(2) = 3 \] ### Step 4: Calculate \( f(f(f(f(2)))) = f(f(f(3))) = f(3) \) Finally, we find \( f(f(f(2))) \): \[ f(f(f(2))) = f(3) = 2 \] ### Conclusion Thus, the value of \( f(f(f(f(2)))) \) is \( 2 \). ### Summary of Steps: 1. Calculate \( f(2) = 3 \). 2. Calculate \( f(3) = 2 \). 3. Calculate \( f(f(2)) = f(3) = 2 \). 4. Calculate \( f(f(f(2))) = f(2) = 3 \). 5. Calculate \( f(f(f(f(2)))) = f(3) = 2 \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 17.2|30 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 17.3|17 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise Final Round|40 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise TEST OF YOU - LEARNING - 2|40 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(x+1)/(x-1), x ne 1 , find f(f(f(f(f(2)))))

If f(x)=(x+1)/(x-1),x!=1 then (f(f(f(f(x)))))=f(x)

If f(x)=(x-1)/(x+1), then find f{f(x)}

If f(x)=(x+1)/(x-1) , x ne 1 , then f^(-1)(x) is

If f(x)=(1-x)/(1+x), x ne 0, -1 and alpha=f(f(x))+f(f((1)/(x))) , then

If f(x)=(1)/(x)-1 where x ne 0, then: f(x)-2.f(2x)=

If f(x)=(1)/(x)-1 where x ne 0, then: f(x)+(1)/(f(x+1))=

If f(x)= {(([x]-1)/(x-1), x ne 1),(0, x=1):} then f(x) is