Home
Class 14
MATHS
If f(x)=4x-5,g(x)=x^(2) and h(x)=(1)/(x)...

If `f(x)=4x-5,g(x)=x^(2) and h(x)=(1)/(x)`, then `f(g(h(x)))` is :

A

`(4)/((x-5))`

B

`(1)/((4x-5)^(2))`

C

`((x)/(4)-5)`

D

`((4)/(x^(2))-5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the composition of the functions \( f(g(h(x))) \) where: - \( f(x) = 4x - 5 \) - \( g(x) = x^2 \) - \( h(x) = \frac{1}{x} \) Let's break this down step by step. ### Step 1: Find \( h(x) \) Given: \[ h(x) = \frac{1}{x} \] ### Step 2: Find \( g(h(x)) \) Now we need to substitute \( h(x) \) into \( g(x) \): \[ g(h(x)) = g\left(\frac{1}{x}\right) = \left(\frac{1}{x}\right)^2 = \frac{1}{x^2} \] ### Step 3: Find \( f(g(h(x))) \) Next, we substitute \( g(h(x)) \) into \( f(x) \): \[ f(g(h(x))) = f\left(\frac{1}{x^2}\right) = 4\left(\frac{1}{x^2}\right) - 5 \] This simplifies to: \[ f(g(h(x))) = \frac{4}{x^2} - 5 \] ### Final Result Thus, the final expression for \( f(g(h(x))) \) is: \[ f(g(h(x))) = \frac{4}{x^2} - 5 \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 17.3|17 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|84 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 17.1|44 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise TEST OF YOU - LEARNING - 2|40 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(1)/(x),g(x)=(1)/(x^(2)), and h(x)=x^(2), then f(g(x))=x^(2),x!=0,h(g(x))=(1)/(x^(2))h(g(x))=(1)/(x^(2)),x!=0, fog (x)=x^(2) fog(x) =x^(2),x!=0,h(g(x))=(g(x))^(2),x!=0 none of these

Let f(x)=x, g(x)=1//x and h(x)=f(x) g(x). Then, h(x)=1, if

let f(x)=e^(x),g(x)=sin^(-1)x and h(x)=f(g(x)) th e n fin d (h'(x))/(h(x))

If f(x)=sinx,g(x)=x^(2)andh(x)=logx. IF F(x)=h(f(g(x))), then F'(x) is

If f(x) is a twice differentiable function such that f'' (x) =-f,f'(x)=g(x),h(x)=f^2(x)+g^2(x) and h(10)=10 , then h (5) is equal to

ARIHANT SSC-FUNCTIONS AND GRAPH-INTRODUCTORY EXERCISE - 17.2
  1. If f(x)=((x-1)/(x+1)), then f(f(ax)) in terms of f(x) is equal to:

    Text Solution

    |

  2. If f(x)=(x)/(sqrt(1+x^(2))), then fofof(x) is equal to:

    Text Solution

    |

  3. If f(x)={{:(1+|x|,,,xlt-1),([x],,,xge-1):} Also, [.] is greatest inte...

    Text Solution

    |

  4. If f(x)=x^(n), n in N and (gof)(x)=ng(x), then g(x) can be :

    Text Solution

    |

  5. Let f:Nrarr R,f(x)=2x-1 g:z rarrR,g(x)=(x^(2))/(2), then (gof)(0) is...

    Text Solution

    |

  6. Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(xne0), then f(x) is equal to :

    Text Solution

    |

  7. Let f(x)=sqrt(x^(5)), then f(5x) is equal to :

    Text Solution

    |

  8. If f(x)=4x-5,g(x)=x^(2) and h(x)=(1)/(x), then f(g(h(x))) is :

    Text Solution

    |

  9. If [x] denotes greatest integer function less than or equal to x and {...

    Text Solution

    |

  10. If the graph of the function f(x)=(a^(x)-1)/(x^(n)(a^(x)+1)) is symmet...

    Text Solution

    |

  11. f(x)=ln(x+sqrt(x^(2)+1)) is :

    Text Solution

    |

  12. If a function f satisfies the conditions f(x+y)=f(x)+f(y)AA, x,y in R,...

    Text Solution

    |

  13. Which of the following function is an even function?

    Text Solution

    |

  14. Which of the following function is odd ?

    Text Solution

    |

  15. Which of the following function is even function?

    Text Solution

    |

  16. If f(x)=root(3)((1-x^(2)))+root(3)((1+x^(2))), then f(x) is :

    Text Solution

    |

  17. Which of the following function is an odd function?

    Text Solution

    |

  18. The function f(x)=(x)/(e^(x)-1)+(x)/(2)+1 is :

    Text Solution

    |

  19. The graph of the function y=f(x) is symmetrical about the line x=2, th...

    Text Solution

    |

  20. Given f(x)=(1)/((1-x)).g(x)=f(f(x)) and h(x)=f(f(f(x))), then the valu...

    Text Solution

    |