Home
Class 14
MATHS
Given f(x)=(1)/((1-x)).g(x)=f(f(x)) and ...

Given `f(x)=(1)/((1-x)).g(x)=f(f(x)) and h(x)=f(f(f(x)))`, then the value of `f(x).g(x).h(x)` is :

A

0

B

`-1`

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( g(x) \) and \( h(x) \) based on the function \( f(x) \) given as: \[ f(x) = \frac{1}{1 - x} \] ### Step 1: Find \( g(x) \) The function \( g(x) \) is defined as \( g(x) = f(f(x)) \). First, we need to calculate \( f(f(x)) \): 1. Substitute \( f(x) \) into itself: \[ f(f(x)) = f\left(\frac{1}{1 - x}\right) \] 2. Now, apply the function \( f \): \[ f\left(\frac{1}{1 - x}\right) = \frac{1}{1 - \frac{1}{1 - x}} \] 3. Simplifying the expression: \[ 1 - \frac{1}{1 - x} = \frac{(1 - x) - 1}{1 - x} = \frac{-x}{1 - x} \] 4. Therefore, \[ f(f(x)) = \frac{1}{\frac{-x}{1 - x}} = \frac{1 - x}{-x} = \frac{x - 1}{x} \] So, we have: \[ g(x) = \frac{x - 1}{x} \] ### Step 2: Find \( h(x) \) The function \( h(x) \) is defined as \( h(x) = f(f(f(x))) \). 1. We already know \( f(f(x)) = \frac{x - 1}{x} \), so we need to find \( f\left(g(x)\right) \): \[ h(x) = f\left(\frac{x - 1}{x}\right) \] 2. Substitute into \( f \): \[ f\left(\frac{x - 1}{x}\right) = \frac{1}{1 - \frac{x - 1}{x}} = \frac{1}{\frac{x - (x - 1)}{x}} = \frac{1}{\frac{1}{x}} = x \] So, we have: \[ h(x) = x \] ### Step 3: Calculate \( f(x) \cdot g(x) \cdot h(x) \) Now we can calculate \( f(x) \cdot g(x) \cdot h(x) \): 1. Substitute the values: \[ f(x) = \frac{1}{1 - x}, \quad g(x) = \frac{x - 1}{x}, \quad h(x) = x \] 2. Multiply them together: \[ f(x) \cdot g(x) \cdot h(x) = \left(\frac{1}{1 - x}\right) \cdot \left(\frac{x - 1}{x}\right) \cdot x \] 3. Simplifying: \[ = \frac{1 \cdot (x - 1) \cdot x}{(1 - x) \cdot x} = \frac{x - 1}{1 - x} \] 4. Notice that \( \frac{x - 1}{1 - x} = -1 \). Thus, the final value is: \[ f(x) \cdot g(x) \cdot h(x) = -1 \] ### Final Answer: The value of \( f(x) \cdot g(x) \cdot h(x) \) is \( -1 \). ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 17.3|17 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|84 Videos
  • FUNCTIONS AND GRAPH

    ARIHANT SSC|Exercise INTRODUCTORY EXERCISE - 17.1|44 Videos
  • ELEMENTS OF ALGEBRA

    ARIHANT SSC|Exercise EXERCISE(LEVEL 1)|32 Videos
  • FUNDAMENTALS

    ARIHANT SSC|Exercise TEST OF YOU - LEARNING - 2|40 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}] . Then the value of f(x).g(x).h(x) is

If f(x)=(x-1)/(x+1), g(x)=1/x and h(x)=-x . Then the value of g(h(f(0))) is:

If f(x)=(1)/(2-x)and g(x)=(f(f(x)))/(3f(f(x))-1) then the value(s) of x at which g(x) is discontinuous is/are

If f(x)=|x-1| and g(x)=f(f(f(x))) then for x>2,g'(x)=

If f(x)=(1)/((1-x)) and g(x)=f[f{f(x))} then g(x) is discontinuous at

If f(x)=|x-1|" and "g(x)=f(f(f(x))) , then for xgt2,g'(x) is equal to

If f(x)=x^(2)g (x) and g(1)=6, g'(x) 3 , find the value of f' (1).

If function f(x)=x^(2)+e^(x//2) " and " g(x)=f^(-1)(x) , then the value of g'(x) is

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

ARIHANT SSC-FUNCTIONS AND GRAPH-INTRODUCTORY EXERCISE - 17.2
  1. If f(x)=((x-1)/(x+1)), then f(f(ax)) in terms of f(x) is equal to:

    Text Solution

    |

  2. If f(x)=(x)/(sqrt(1+x^(2))), then fofof(x) is equal to:

    Text Solution

    |

  3. If f(x)={{:(1+|x|,,,xlt-1),([x],,,xge-1):} Also, [.] is greatest inte...

    Text Solution

    |

  4. If f(x)=x^(n), n in N and (gof)(x)=ng(x), then g(x) can be :

    Text Solution

    |

  5. Let f:Nrarr R,f(x)=2x-1 g:z rarrR,g(x)=(x^(2))/(2), then (gof)(0) is...

    Text Solution

    |

  6. Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(xne0), then f(x) is equal to :

    Text Solution

    |

  7. Let f(x)=sqrt(x^(5)), then f(5x) is equal to :

    Text Solution

    |

  8. If f(x)=4x-5,g(x)=x^(2) and h(x)=(1)/(x), then f(g(h(x))) is :

    Text Solution

    |

  9. If [x] denotes greatest integer function less than or equal to x and {...

    Text Solution

    |

  10. If the graph of the function f(x)=(a^(x)-1)/(x^(n)(a^(x)+1)) is symmet...

    Text Solution

    |

  11. f(x)=ln(x+sqrt(x^(2)+1)) is :

    Text Solution

    |

  12. If a function f satisfies the conditions f(x+y)=f(x)+f(y)AA, x,y in R,...

    Text Solution

    |

  13. Which of the following function is an even function?

    Text Solution

    |

  14. Which of the following function is odd ?

    Text Solution

    |

  15. Which of the following function is even function?

    Text Solution

    |

  16. If f(x)=root(3)((1-x^(2)))+root(3)((1+x^(2))), then f(x) is :

    Text Solution

    |

  17. Which of the following function is an odd function?

    Text Solution

    |

  18. The function f(x)=(x)/(e^(x)-1)+(x)/(2)+1 is :

    Text Solution

    |

  19. The graph of the function y=f(x) is symmetrical about the line x=2, th...

    Text Solution

    |

  20. Given f(x)=(1)/((1-x)).g(x)=f(f(x)) and h(x)=f(f(f(x))), then the valu...

    Text Solution

    |