Home
Class 11
MATHS
Show that lim(xto0^(-)) ((e^(1//x)-1)/(e...

Show that `lim_(xto0^(-)) ((e^(1//x)-1)/(e^(1//x)+1))` does not exist.

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement 1: If lim_(xto0){f(x)+(sinx)/x} does not exist then lim_(xto0)f(x) does not exist. Statement 2: lim_(xto0)((e^(1//x)-1)/(e^(1//x)+1)) does not exist.

Statement 1: If lim_(xto0){f(x)+(sinx)/x} does not exist then lim_(xto0)f(x) does not exist. Statement 2: lim_(xto0)((e^(1//x)-1)/(e^(1//x)+1)) does not exist.

Show that ("lim")_(xrarr0) (e^(1/x)-1)/(e^(1/x)+1) does not exist

Show that ("lim")_(xrarr0) (e^(1/x)-1)/(e^(1/x)+1) does not exist

Show that underset(xto0)lim(e^(1//x)-1)/(e^(1//x)+1) does not exist.

Show that underset(xto0)lim(e^(1//x)-1)/(e^(1//x)+1) does not exist.

lim_(xto0)((e^(x)-1)/x)^(1//x)

lim_(xto0)((e^(x)-1)/x)^(1//x)

Evaluate lim_(xto0^(+))(1/x-1/(e^(x)-1)) .

lim_(xto0)(e^(3x)-1)/(x) is :