Home
Class 11
MATHS
" If "f(x)=sin((pi)/(3)[x]-x^(2))" then ...

" If "f(x)=sin((pi)/(3)[x]-x^(2))" then the value of "f(sqrt((pi)/(3)))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sin3x cos4x , then the value of f''((pi)/(2)) is -

If f(x)=x^(11)+sin^(3)(35x)+111x, then the value of f^(-1)(sin((pi)/(5)))+f^(-1)(sin(6(pi)/(5)))+f^(-1)(((sin pi)/(7)))+f^(-1)(sin(8(pi)/(7)))

If f'(x)=3x^(2)sin x-x cos x x!=0 f(0)=0 then the value of f((1)/(pi)) is

f(x)=int x^(sin x)(1+x cos x*ln x+sin x)dx and f((pi)/(2))=(pi^(2))/(4) Then the value of |cos(f(pi))| is

If f'(x)=3x^(2)sin x-x cos x ,x!=0 f(0)=0 then the value of f((1)/(pi)) is

If f(x)= sin""x/2 ,then the value of f''( pi ) is-

STATEMENT-1: The values of f(x)=3sin(sqrt((pi^(2))/(16)-x^(2)) lie in the interval [0,(3)/(sqrt(3))]. and STATEMENT-2The domain of definition of the function f(x)=3sin(sqrt((pi^(2))/(16)-x^(2)) is [-(pi)/(4),(pi)/(4)]

If f : R rarr R and g : R rarr R be two mapping such that f(x) = sin x and g(x) = x^(2) , then find the values of (fog) (sqrt(pi))/(2) "and (gof)"((pi)/(3)) .

If f : R rarr R and g : R rarr R be two mapping such that f(x) = sin x and g(x) = x^(2) , then find the values of (fog) (sqrt(pi))/(2) "and (gof)"((pi)/(3)) .

If f : R rarr R and g : R rarr R be two mapping such that f(x) = sin x and g(x) = x^(2) , then find the values of (fog) ((sqrt(pi))/(2)) and (gof)((pi)/(3)) .