Home
Class 12
MATHS
An angle theta is divided into two parts...

An angle `theta` is divided into two parts `alpha " and " beta` such that
`tan alpha : tan beta = x : y : " prove that ", sin (alpha - beta) =(x-y)/(x+y) sin theta.`

Promotional Banner

Similar Questions

Explore conceptually related problems

An angle theta is divided into two parts alpha, beta such that tan alpha: tan beta = x:y prove that sin (alpha-beta)=frac{x-y}{x+y}sin theta

If alpha+beta=theta and tan alpha:tan beta=x:y, prove that sin(alpha-beta)=(x-y)/(x+y)sin theta

If alpha+beta=theta and tan alpha:tan beta=x:y, prove that sin(alpha-beta)=(x-y)/(x+y)sin theta

If alpha+beta=theta and (tan alpha)/(tan beta) = x/y , prove that sin (alpha-beta) = (x-y)/(x+y) sin theta

If alpha+beta=theta and (tan alpha)/(tan beta)=(x)/(y), prove that sin(alpha-beta)=(x-y)/(x+y)sin theta

if tan alpha-tan beta=x and cot beta-cot alpha=y prove that cot(alpha-beta)=(x+y)/(xy)

sin alpha + sin beta = a "and" cos alpha + cos beta = b (tan alpha + tan beta)/(1-tan alpha tan beta)=

If tan beta=cos theta tan alpha , then prove that tan^(2)""(theta)/(2)=(sin(alpha-beta))/(sin(alpha+beta)) .

If tan beta=cos theta tan alpha , then prove that tan^(2)""(theta)/(2)=(sin(alpha-beta))/(sin(alpha+beta)) .