Home
Class 12
MATHS
" 30.If "(log a)/(b-c)=(log b)/(c-a)=(lo...

" 30.If "(log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b)," then prove that "a^(a)b^(b)c^(c)=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then prove that (a^(a))(b^(c))(c^(c))=1

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b) then prove that a^(b+c)*b^(c+a)*c^(a+b)=1

if (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b) then find the value of a^(a)b^(b)c^(c)

(v) quad if (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b) then find the value of a^(a)b^(b)c^(c)

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then a^(b+c)*b^(c+a)*c^(a+b)=

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then a^(b+c)+b^(c+a)+c^(a+b) is

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b) then a^(a)*b^(b)*c^(c)=

If a,b,c are positive reral numbers such that (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then prove that

a,b,c are positive real numbers such that log a(b-c)=(log b)/(c-a)=(log c)/(a-b) then prove that (1)a^(b+c)+b^(c+a)+c(a+b)>=3(2)a^(a)+b^(b)+c^(c)>=3