Home
Class 12
MATHS
If logx/(y-z)= logy/(z-x)= logz/(x-y) th...

If `logx/(y-z)= logy/(z-x)= logz/(x-y)` then prove that `x^(y+z) y^(z+x) z^(x+y)=1` Also prove that `x^(y+z)+y^(z+x)+z^(x+y) >=3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If logx/(y-z)=logy/(z-x)=logz/(x-y) prove that xyz=1

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y), then prove that: x^(x)y^(y)z^(z)=1

If (log x)/(y-z)=(logy)/(z-x) =(logz)/(x-y) , then prove that: x^x y^y z^z=1

If (logx)/(y-z) = (logy)/(z-x) = (logz)/(x-y) , then prove that (i) x^(x) . y^(y) . z^(z) = 1 .

If (logx)/(y-z)=(logy)/(z-x)=(logz)/(x-y) show that x^(x)y^(y)z^(z)=1

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y) then prove that x^(y)+z^(z)+xx^(y+z)+y^(x+x)+z^(x+y)>=3

If (x(y+z-x))/log x = (y(z+x-y))/log y = (z(x+y-z))/log z ," prove that "x^(y) y^(x) = z^(y) y^(z) = x^(z) z^(x) .

If (x(y+z-x))/log x = (y(z+x-y))/log y = (z(x+y-z))/log z ," prove that "x^(y) y^(x) = z^(y) y^(z) = x^(z) z^(x) .

(If(y+z-x))/((x(y+z-x))/(log y))=(y(z+x-y))/(log y)(z(x+y-z))/(log z), prove that x^(y)y^(x)=z^(x)y^(z)=x^(z)z^(x)

If (y+z-x)/(log x)=y(z+x-y)/(log y)=z(x+y-z)/(log z) Prove that x^(y)y^(x)=z^(y)y^(z)=x^(z)z^(x)