Home
Class 12
MATHS
यदि |x|lt(pi)/(2), तो सिद्ध करे कि tan^(...

यदि `|x|lt(pi)/(2)`, तो सिद्ध करे कि `tan^(-1)((cosx)/(1-sinx))=(pi)/(4)+(pi)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((cosx)/(1+sinx))=(pi/4-x/2)

tan^(-1)((cosx-sinx)/(cosx+sinx))=pi/4-x

Simplify tan^(-1).(cosx/(1-sinx))(-pi)/2 lt x lt pi/2

sqrt((1+sinx)/(1-sinx))=tan(pi/4+x/2)

Prove that tan^-1((cosx)/(1+sinx))=pi/4-x/2,\ x in (-pi/2,pi/2)

cos^(-1)((sinx+cosx)/(sqrt(2))),-(pi)/(4) ltx lt(pi)/(4)

Express tan^(-1)((cosx)/(1-sinx)),-(pi)/(2)ltxlt(pi)/(2) in the simplest form.

Prove that tan^(-1)((cosx)/(1+sinx))=pi/4-x/2x in [-pi/2,pi/2]

Show that tan^(-1)[(cosx+sinx)/(cosx-sinx)]=(pi)/(4)+x .

Prove that : tan^-1((cosx)/(1+sinx)) = pi/4 - x/2, x in (-pi/2,pi/2)