Home
Class 11
MATHS
Using application of trignometric formul...

Using application of trignometric formulas prove that `(i)cos(pi/4+x)+cos(pi/4-x)=sqrt2cosx (ii)sin(7pi/12)cos(pi/4)-cos(7pi/12)sin(pi/4)= sqrt3/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using application of trignometric formulas prove that (i)cos(pi/4+x)+cos(pi/4-x)=sqrt2cos x(i1)sin(7pi/12)cos(pi/4)-cos(7pi/12)sin(pi/4)

prove that cos(pi/4+x)+cos(pi/4-x)=sqrt2cosx

Prove that cos(pi/4+x)+cos(pi/4-x)=sqrt(2)cosx .

Prove that: cos(pi/4+x)+cos(pi/4-x\ )=sqrt(2)cosx

Prove that: cos(pi/4+x)+cos(pi/4-x)=sqrt(2)\ cos x

Prove that: cos(pi/4+A)+cos(pi/4-A)=sqrt(2)cosA

Prove that: cos(pi/4+A)+cos(pi/4-A)=sqrt(2)cosA

Prove that : cos((pi)/4+x)+cos((pi)/4-x)=sqrt(2)cosx

Prove that cos((pi)/(4)+x)+cos((pi)/(4)-x)=sqrt(2)cosx

prove the following cos(pi/4+x)+cos(pi/4-x) = sqrt2cosx