Home
Class 11
MATHS
If A=460^0, prove that 2cos(A/2)=-sqrt(1...

If `A=460^0`, prove that `2cos(A/2)=-sqrt(1+sinA)+sqrt(1-sinA)`

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt((1+sinA)/(1-sin A ))=

sqrt((1+sinA)/(1-sinA))

If A=580^(0) then -sqrt(1+sinA)-sqrt(1-sinA)=

In any triangleABC , prove that (sqrt(sinA)-sqrt(sinB))/(sqrt(sinA) + sqrt(sinB)) = (a+b-2sqrt(ab))/(a-b) [Hint : (a-b)^(2) = a^(2)+b^(2)-2ab ]

In any triangleABC , prove that (sqrt(sinA)-sqrt(sinB))/(sqrt(sinA) + sqrt(sinB)) = (a+b-2sqrt(ab))/(a-b) [Hint : (a-b)^(2) = a^(2)+b^(2)-2ab ]

Prove that cosA/(1+sinA)+(1+sinA)/cosA=2secA .

Prove that: sin^2(A/2+pi/8) - sin^2(A/2-pi/8)= 1/sqrt(2)sinA

Prove that sqrt((1+sinA)/(1-sinA))=tan(pi/4+A/2)

Prove that sqrt((1+sinA)/(1-sinA))=secA+tanA.